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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• f : Fpn → Fpm

• α ∈ F∗pn , Dα : Fpn → Fpm , x 7−→ f(x + α) − f(x)

• f is perfect nonlinear if Dαf is balanced for every α ∈ F∗pn

• Note if f is linear, then Dαf is constant.
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• f : Fpn → Fp

• λ ∈ Fpn

f̂ : Fpn → C

λ 7−→
∑

x∈Fn
p
ε

f(x)−Tr(λx)
p whrere εp = e

2πi
p .

• f is bent if | f̂(λ) |= p
n
2 for all λ ∈ Fpn

• f is bent⇔ f is perfect nonlinear (in this sitiuation).

Ferruh Özbudak and RumiMelih Pelen Middle East Technical UniversityStrongly Regular Graphs arising from NonWeakly Regular Bent Functions



Section 1: Bent Functions and Their Duals in Odd
Characteristics

• p ≥ 3 prime,

• f : Fpn → Fp bent.

• f̂(λ) = ξλp
n
2 ε

f∗(λ)
p for all λ ∈ Fpn

Here ξλ ∈ C, | ξλ |= 1 and f∗ : Fpn ⇒ Fp a function.

Moreover:

• n : even or [n : odd and p ≡ 1 mod 4]⇒ ξλ ∈ {−1, 1}.

• [n : odd and p ≡ 3 mod 4]⇒ ξλ ∈ {−i, i}.
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• p ≥ 3 odd,

• f : Fpn ⇒ Fp bent.

• f is weakly regular bent if there exist λ ∈ C such that
f̂(λ) = ξp

n
2 ε

f∗(λ)
p for all λ ∈ Fpn

This means ξ is independent from λ.

• If f is bent but not weakly regular, then f is non weakly regular
bent.

• There exist weakly regular bent functions.

• There exist non weakly regular bent functions.
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• p ≥ 3 prime,

• f : Fpn ⇒ Fp bent. f̂(λ) = ξλp
n
2 ε

f∗(λ)
p for all λ ∈ Fpn

• Here f∗ : Fpn ⇒ Fp is the dual function of f .

• Fact: f is weakly regular bent with ξ ⇒f∗ is weakly regular

bent with ξ−1
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• p ≥ 3 prime,

• f : Fpn ⇒ Fp bent.

• f̂(λ) = ξλp
n
2 ε

f∗(λ)
p

• Fact: There exist non weakly regular bent f with f∗ bent.

• Quate from: A. Cesmelioglu, W. Meidl, A. Pott,
”On the dual of non weakly regular bent functions and
self-dual bent functions”, Advances in Mathematics of
Communications, vol. 7, pp. 425 − 440, 2013.
page 429 Remark 2 :

”. . . The existence of non weakly regular bent functions with
the dual f∗ is weakly regular is an open problem. . . .”.
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• Our new result: (Özbudak, P., 2017)
p ≥ 3 prime
f : Fpn ⇒ Fp non weakly regular.
f∗ : bent⇒ f∗ : non weakly regular.

• In fact we proved that if f∗ is bent then f∗∗(x) = f(−x) as in the
case of weakly regular bent functions

• Hence we solve the quoted open problem.
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Section 1: Bent Functions and Their Duals in Odd
Characteristics

• Any bent g : Fpn ⇒ Fp is of two types.

• Type + : f̂(0) = εp
n
2 ε

f∗(0)
p , ε ∈ {1, i}

• Type - : f̂(0) = εp
n
2 ε

f∗(0)
p , ε ∈ {−1,−i}

• Observe that type of f is completely determined by its value
distribution.

Remark 1
Regular bent functions are of Type +. Non weakly regular bent
functions are can be of both type. If n is even, weakly regular but
not regular bent functions are Type - otherwise can be of both type.
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Section 2: Partial Difference Sets and Strongly Regular
Graphs

Definition 2 (Partial Difference Sets)
Let G be a group of order v and D be a subset of G with k
elements. Then D is called a (v , k , λ, µ)− partial difference set
(PDS) in G if the expressions gh−1, for g and h in D with g , h,
represent each nonidentity element in D exactly λ times and
represent each nonidentity element not in D exactly µ times.

A PDS is called regular if e < D and D−1 = D.

Example 3
Let G be the additive group of a finite field Fq where q is an odd
prime power and q ≡ 1 mod 4. Then the set D of all nonzero
squares in Fq forms a regular (q, (q − 1)/2, (q − 5)/4, (q − 1)/4)−
PDS in G.
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Section 2: Partial Difference Sets and Strongly Regular
Graphs

Observe that the regular condition of PDSs is not restrictive. If D is
a PDS with e ∈ D and D−1 = D, then D \ {e} is also a PDS. The
following proposition shows that D−1 = D is quite common for
PDSs.

Proposition 1

If D is a (v , k , λ, µ)− PDS with λ , µ, then D−1 = D.

A PDS with λ = µ is just an ordinary difference set.
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Section 2: Partial Difference Sets and Strongly Regular
Graph

Definition 4 (Strongly Regular Graphs)

A graph Γ with v vertices is said to be a (v , k , λ, µ)− strongly
regular graph if

1 it is regular of valency k , i.e., each vertex is joined to exactly k
other vertices;

2 any two adjacent vertices are both joined to exactly λ other
vertices and two nonadjacent vertices are both joined to
exactly µ other vertices.

Definition 5 (Cayley Graph)
G : a finite abelian group
D : an inverse-closed subset of G (0 < D and D = −D)
E := {(x, y)|x, y ∈ G, x − y ∈ D}
(G,E) is called a Cayley graph, denoted by Cay(G,D).
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Section 2: Partial Difference Sets and Strongly Regular
Graphs

D is called the connection set of (G,E).

Proposition 2 ( MA)

A Cayley graph Γ , generated by a subset D of the regular
automorphism group G, is a strongly regular graph if and only if D
is a regular PDS in G.

A subset D of G is called trivial if either D ∪ {e} or (G \D)U{e} is a
subgroup of G. It is equivalent to say that the Cayley graph
generated by D \ {e} is a union of complete graphs or its
complement. Otherwise, D is called nontrivial.

Proposition 3 ( MA)

Let D be a regular (v , k , λ, µ)− PDS with D , G \ {e}. Then D is
nontrivial if and only if 1 ≤ µ ≤ k − 1.
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Section 3: Connection with Bent Functions

• Let Di = {x : x ∈ F∗
32m |f(x) = i}

Theorem 6 (Tan, Pott and Fang)
Let f : F32m → F3 be a weakly regular ternary bent function such
that f(x) = f(−x) and f(0) = 0. Then the subsets D0,D1 and D2 of
F32m are partial difference sets with certain parameters.

• After a short time, Chee,Tan and Zhang generalize this work
by using weakly regular p−ary bent functions to construct.
strongly regular graphs.

• Let us define the following sets:
• D = {x : x ∈ F∗

p2m | f(x) = 0}

• DN = {x : x ∈ F∗
p2m | f(x) is non square}

• DS = {x : x ∈ F∗
p2m | f(x) is non zero square}
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Section 3: Connection with Bent Functions

Theorem 7 (Chee,Tan and Zhang)
Let f : Fp2m → Fp be a weakly regular bent function such that
f(x) = f(−x) and f(0) = 0 . If there exists an integer l with
(l − 1, p − 1) = 1 such that f(ax) = a l f(x) for any a ∈ Fp and
x ∈ Fp2m , then the sets D,DN ,DS are regular partial difference sets
with certain parameters

• Remark 4 ( [4]) : ”By using MAGMA, we know that the sets
D,DN ,DS are not PDS for non weakly regular bent function
f(x) = Tr(w7x98) over F36 , where w is a primitive element of
F36 . This implies that the weakly regular condition is
necessary.”

• Question: What if we change the sets?
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Section 3: Connection with Bent Functions

• Let f : F3n → F3 be a non weakly regular bent function such
that f(x) = f(−x)

• We divide F3n into two subsets as follows.

B0 := {w : w ∈ Fn
p | f(x) + w.x is type +} (1)

B1 := {w : w ∈ Fn
p | f(x) + w.x is type -} (2)

• Observe that f(x) = f(−x) for all x ∈ F3n implies f̂(x) = f̂(−x)
for all x ∈ F3n

• Therefore B0 = −B0 and B1 = −B1

• By definition 0 ∈ B0 if f is type + and 0 ∈ B1 if f is type -
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Section 3: Connection with Bent Functions

Theorem 8 (Özbudak, Pelen)

Let f : F3n → F3 be a non weakly regular bent function such that
f(x) = f(−x) Then the sets B∗0 and B∗1 are partial difference sets
with certain parameters.

By using magma we have obtained the following sporadic
examples corresponding to Theorem 8.

Example 9

g1 : F36 → F3, g1(x) = Tr6(λ7x98) is non-weakly regular (Type−).
Dual of g1 is not bent and corresponding partial difference sets and
strongly regular graphs are non trivial.

• B0 is a (729, 504, 351, 342)-PDS in F36

• B∗1 is a (729, 224, 62, 71)-PDS in F36
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Section 3: Connection with Bent Functions

Example 10

g2 : F34 → F3, g2(x) = Tr4(a0x22 + x4) is non-weakly regular,
where a0 ∈ {λ

10,−λ10, λ30,−λ30} (Type+). Dual of g2 is not bent.
B0 is an subgroup of F34 and so corresponding partial difference
sets and strongly regular graphs are trivial.

• B∗0 is a (81, 26, 25, 0)-PDS in F34

• B1 is a (81, 54, 27, 54)-PDS in F34
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Section 3: Connection with Bent Functions

Example 11

g3 : F33 → F3, g3(x) = Tr3(x22 + x8) is non-weakly regular
(Type+). It is self dual. B0 is an subgroup of F33 and so
corresponding partial difference sets and strongly regular graphs
are trivial.

• B∗0 is a (27, 8, 7, 0)-PDS in F33

• B1 is a (27, 18, 9, 18)-PDS in F33
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Section 3: Connection with Bent Functions

Example 12

g4 : F36 → F3, g4(x) = Tr6(λx20 + λ41x92) is non-weakly regular
(Type−).Dual of g4 is bent. Since B1 is an subgroup of F36 and so
corresponding partial difference sets and strongly regular graphs
are trivial.

• B0 is a (729, 648, 567, 648)-PDS in F36

• B∗1 is a (729, 80, 79, 0)-PDS in F36
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Section 3: Connection with Bent Functions

Example 13

g5 : F36 → F3, g5(x) = Tr6(λ7x14 + (λ35x70)) is non-weakly regular
(Type−). Dual of g5 is not bent. Corresponding partial difference
sets are non trivial.

• B0 is a (729, 504, 351, 342)- regular PDS in F36

• B∗1 is a (729, 224, 62, 71)- regular PDS in F36

Remark 14
Non trivial strongly regular graphs correspond to g1 and g5 are
from a unital: projective 9 − ary [28, 3] code with weights 24, 27;
VO−(6, 3) affine polar graph. (See [2])

Ferruh Özbudak and RumiMelih Pelen Middle East Technical UniversityStrongly Regular Graphs arising from NonWeakly Regular Bent Functions



Section 4: Cylotomic Schemes and Their Fusions

Definition 15 (Association Scheme)
Let V be a finite set of vertices, and let {R0,R1, . . . ,Rd} be binary
relations on V with R0 := {(x, x) : x ∈ V}. The configuration
(V ; R0,R1, . . . ,Rd) is called an association scheme of class d on V
if the following holds:

1 V × V = R0 ∪ R1 ∪ · · · ∪ Rd and Ri ∩ Rj = for i , j.
2 R t

i = Ri′ for some i
′

∈ {0, 1, . . . , d}, where
R t

i := {(x, y)|(y, x) ∈ Ri}. If i
′

= i, we call Ri is symmetric.
3 For i, j, k ∈ {0, 1, . . . , d} and for any pair (x, y) ∈ Rk , the

number #{z ∈ V |(x, z) ∈ Ri , (z, y) ∈ Rj} is a constant, which
is denoted by pk

ij .

An association scheme is said to be symmetric if every Ri is
symmetric.
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Section 4: Cylotomic Schemes and Their Fusions

Definition 16 (Translation Scheme)

Γi := (G,Ei), 1 ≤ i ≤ d : Cayley graphs on an abelian group G.
Di : connection sets of (G,Ei)
D0 := {0}.
(G, {Di}

d
i=0) is called a translation scheme if (G, {Γi}

d
i=0) is an

association scheme.

Given a d− class translation scheme (X , {Ri}
d
i=0), we can take

union of classes to form graphs with larger edge sets which is
called a fusion.

Remark 17 (Fusion Scheme)
Note that if the fusion gives a translation scheme again, it is called
fusion scheme. However, it is not the case everytime.
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Section 4: Cylotomic Schemes and Their Fusions

Fq : the finite field of order q

F∗q : the multiplicative group of Fq

S : be a subgroup of F∗q s.t. S = −S

Definition 18 (Cylotomic Scheme)

The partition F∗q \ S of F∗q gives a translation scheme on (Fq,+),
called a cyclotomic scheme.

Each coset (called a cyclotomic coset) of F∗q \ S is expressed as

S(N,q)
i = γi〈γN〉, 0 ≤ i ≤ N − 1,

where N|q − 1 is a positive integer and γ is a fixed primitive
element of F∗q
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Section 4: Cylotomic Schemes and Their Fusions

• Let q = pn. The functions Ψa : Fq 7→ C
∗, a ∈ Fq, defined by

Ψa(x) = ε
Trq\p(ax)
p

are all additive characters of Fq.

• Note that Ψa(x) = Ψ1(ax) and Ψa(x) = Ψa(−x).

• Eigenvalues of the cylotomic schemes are given by
Ψa(S(N,q)

i ), Ψa ∈ Ĝ (Group of additive characters), called
Gauss periods.

• Observe that , Ψa(S(N,q)
i ) = Ψ1(S(N,q)

i+t ) for any a ∈ S(N,q)
t .
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Section 4: Cylotomic Schemes and Their Fusions

• Write ηi = Ψ1(S(N,q)
i ). Then, the first eigenmatrix of the

cyclotomic scheme is given by

1 q−1
n

q−1
n

q−1
n . . . q−1

n
1 η0 η1 η2 . . . ηN−1

1 η2 η3 η4 . . . η0
...

...
...

...
...

1 ηN−1 η0 η1 . . . ηN−2


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Section 4: Cylotomic Schemes and Their Fusions

• It is an interesting problem to determine fusion schemes of a
N−class cyclotomic scheme on Fq,

• Let Xj , j = 1, 2, . . . , d : a partition of ZN

• The Bannai-Muzychuk criterion (See [1, 10]) implies that⋃
i∈Xj

S(N,q)
i forms a translation scheme iff ∃ a partition

Yh , h = 1, 2, . . . , d of ZN s.t. each Ψ1(γa ⋃
i∈Xj

S(N,q)
i ) is

const. according to a ∈ Yh .
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Section 4: Cylotomic Schemes and Their Fusions

• Let us consider 2−class fusion schemes (strongly regular
graphs) of cyclotomic schemes of order N = pn−1

p−1 .

• T0 := {logγ x(mod N)|Trpn\p(x) = 0, x , 0}.

• X : a subset of ZN

• When is Γ = Cay(
⋃

i∈X S(N,pn)
i ) strongly regular?

• Γ is strongly regular iff Ψ1(γa ⋃
i∈X S(N,q)

i ), a = 0, 1, . . . ,N − 1,
take exactly two values.

• Equivalently it has exactly two distinct eigenvalues.

Proposition 4 (Delsarte)

Cay(
⋃

i∈X S(N,pn)
i ) is strongly regular iff |X ∩ (T0 − a)|, a ∈ ZN, take

exactly two values.
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Section 4: Cylotomic Schemes and Their Fusions

• Let f : F3n → F3 be a non weakly regular bent function such
that f(x) = f(−x)

• q = 3n, N = 3n−1
2 and γ be a primitive element of F∗3n . For the

simplicity let us use the notation Si := S(N,q)
i

• Obviously, S0 = F∗3 and Sa = {γa ,−γa} for all a ∈ ZN

• Observe that B∗0 ∪ B∗1 =
⋃

a∈ZN
Sa

• Let us define the following disjoint sets

X0 := {a : a ∈ ZN | Sa ⊂ B∗0}

X1 := {a : a ∈ ZN | Sa ⊂ B∗1}

• Clearly X0 ∪ X1 = ZN .
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Section 4: Cylotomic Schemes and Their Fusions

Lemma 19

For all i ∈ {0, 1}, |Xi ∩ (T0 − a)|, a ∈ ZN, take exactly two values.

Proof.
We use character sums such as Gauss and Jacobi sums. Since it
has many details we find appropriate to skip it here. �

Remark 20
Indeed, lemma 19 implies, the sets B∗0 and B∗1 are two intersection
sets in PG(n − 1, 3) which correspond to two weight projective
codes.
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Corollary 21
The partition of F∗3n with respect to signs of the Walsh transform of
a non weakly regular ternary bent function having the property
f(x) = f(−x) gives 2−class fusion scheme of the 3n−1

2 −class
cyclotomic scheme on F3n
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