Strongly Regular Graphs arising from Non Weakly Regular Bent Functions

> Ferruh Özbudak and Rumi Melih Pelen Middle East Technical University

> > June 18, 2018 Loen

イロト イヨト イヨト イヨト 三日

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIV

- Section 1. Bent Functions and Their Duals in Odd Characteristics
- Section 2. Partial Difference Sets and Strogly Regular Graphs
- Section 3. Connection with Non Weakly Regular Bent Functions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

• Section 4. Cylotomic Schemes and Their Fusions

• $f: \mathbb{F}_{p^n} \to \mathbb{F}_{p^m}$

•
$$\alpha \in \mathbb{F}_{p^n}^*, \ D_\alpha : \mathbb{F}_{p^n} \to \mathbb{F}_{p^m}, \ x \longmapsto f(x + \alpha) - f(x)$$

• *f* is perfect nonlinear if $D_{\alpha}f$ is balanced for every $\alpha \in \mathbb{F}_{p^n}^*$

• Note if *f* is linear, then $D_{\alpha}f$ is constant.

- $f: \mathbb{F}_{p^n} \to \mathbb{F}_p$
- $\lambda \in \mathbb{F}_{p^n}$
 - $\hat{f}:\mathbb{F}_{p^n}\to\mathbb{C}$

$$\lambda \mapsto \sum_{x \in \mathbb{F}_p^n} \epsilon_p^{f(x) - Tr(\lambda x)}$$
 where $\epsilon_p = e^{\frac{2\pi i}{p}}$.

- *f* is bent if $|\hat{f}(\lambda)| = p^{\frac{n}{2}}$ for all $\lambda \in \mathbb{F}_{p^n}$
- *f* is bent \Leftrightarrow *f* is perfect nonlinear (in this situation).

・ロト・日本・モート モー シック

- *p* ≥ 3 prime,
- $f: \mathbb{F}_{p^n} \to \mathbb{F}_p$ bent.

•
$$\hat{f}(\lambda) = \xi_{\lambda} p^{\frac{n}{2}} \epsilon_{p}^{f^{*}(\lambda)}$$
 for all $\lambda \in \mathbb{F}_{p^{n}}$

Here $\xi_{\lambda} \in \mathbb{C}$, $|\xi_{\lambda}| = 1$ and $f^* : \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$ a function.

Moreover:

• n: even or $[n: \text{odd and } p \equiv 1 \mod 4] \Rightarrow \xi_{\lambda} \in \{-1, 1\}.$

• $[n: \text{odd and } p \equiv 3 \mod 4] \Rightarrow \xi_{\lambda} \in \{-i, i\}.$

- *p* ≥ 3 odd,
- $f: \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$ bent.
- *f* is weakly regular bent if there exist $\lambda \in \mathbb{C}$ such that $\hat{f}(\lambda) = \xi p^{\frac{n}{2}} \epsilon_p^{f^*(\lambda)}$ for all $\lambda \in \mathbb{F}_{p^n}$ This means ξ is independent from λ .
- If *f* is bent but not weakly regular, then *f* is non weakly regular bent.

- There exist weakly regular bent functions.
- There exist non weakly regular bent functions.

p ≥ 3 prime,

•
$$f: \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$$
 bent. $\hat{f}(\lambda) = \xi_{\lambda} p^{\frac{n}{2}} \epsilon_p^{f^*(\lambda)}$ for all $\lambda \in \mathbb{F}_{p^n}$

- Here $f^* : \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$ is the dual function of f.
- Fact: *f* is weakly regular bent with ξ ⇒ *f*^{*} is weakly regular bent with ξ⁻¹

- *p* ≥ 3 prime,
- $f: \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$ bent.
- $\hat{f}(\lambda) = \xi_{\lambda} p^{\frac{n}{2}} \epsilon_{p}^{f^{*}(\lambda)}$
- Fact: There exist non weakly regular bent f with f* bent.
- Quate from: A. Cesmelioglu, W. Meidl, A. Pott, "On the dual of non weakly regular bent functions and self-dual bent functions", Advances in Mathematics of Communications, vol. 7, pp. 425 – 440, 2013. page 429 Remark 2 :

"... The existence of non weakly regular bent functions with the dual f^* is weakly regular is an open problem....".

- Our new result: (Özbudak, P., 2017)
 p ≥ 3 prime
 f : 𝑘_{*p*ⁿ} ⇒ 𝑘_{*p*} non weakly regular.
 *f** : bent ⇒ *f** : non weakly regular.
- In fact we proved that if *f*[∗] is bent then *f*^{∗∗}(*x*) = *f*(−*x*) as in the case of weakly regular bent functions

イロト イボト イヨト イヨト 二日

• Hence we solve the quoted open problem.

- Any bent $g: \mathbb{F}_{p^n} \Rightarrow \mathbb{F}_p$ is of two types.
- Type + : $\hat{f}(0) = \epsilon p^{\frac{n}{2}} \epsilon_p^{f^*(0)}, \ \epsilon \in \{1, i\}$
- Type : $\hat{f}(0) = \epsilon p^{\frac{n}{2}} \epsilon_p^{f^*(0)}, \ \epsilon \in \{-1, -i\}$
- Observe that type of *f* is completely determined by its value distribution.

Remark 1

Regular bent functions are of **Type +**. Non weakly regular bent functions are can be of both type. If n is even, weakly regular but not regular bent functions are **Type -** otherwise can be of both type.

Section 2: Partial Difference Sets and Strongly Regular Graphs

Definition 2 (Partial Difference Sets)

Let *G* be a group of order *v* and *D* be a subset of *G* with *k* elements. Then *D* is called a (v, k, λ, μ) – partial difference set (PDS) in *G* if the expressions gh^{-1} , for *g* and *h* in *D* with $g \neq h$, represent each nonidentity element in *D* exactly λ times and represent each nonidentity element not in *D* exactly μ times.

A PDS is called **regular** if $e \notin D$ and $D^{-1} = D$.

Example 3

Let *G* be the additive group of a finite field \mathbb{F}_q where *q* is an odd prime power and $q \equiv 1 \mod 4$. Then the set *D* of all nonzero squares in \mathbb{F}_q forms a regular (q, (q-1)/2, (q-5)/4, (q-1)/4)– PDS in *G*.

Section 2: Partial Difference Sets and Strongly Regular Graphs

Observe that the regular condition of PDSs is not restrictive. If *D* is a PDS with $e \in D$ and $D^{-1} = D$, then $D \setminus \{e\}$ is also a PDS. The following proposition shows that $D^{-1} = D$ is quite common for PDSs.

Proposition 1

If D is a (v, k, λ, μ) – PDS with $\lambda \neq \mu$, then $D^{-1} = D$.

A PDS with $\lambda = \mu$ is just an ordinary difference set.

Section 2: Partial Difference Sets and Strongly Regular Graph

Definition 4 (Strongly Regular Graphs)

A graph Γ with v vertices is said to be a (v, k, λ, μ) - strongly regular graph if

- it is regular of valency k, i.e., each vertex is joined to exactly k other vertices;
- any two adjacent vertices are both joined to exactly λ other vertices and two nonadjacent vertices are both joined to exactly μ other vertices.

Definition 5 (Cayley Graph)

G: a finite abelian group D: an inverse-closed subset of G (0 < D and D = -D) $E := \{(x, y) | x, y \in G, x - y \in D\}$ (G, E) is called a Cayley graph, denoted by Cay(G, D).

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIVERSITSTRONGLY REGULAR GRAPHS ARISING FROM NON WEAKLY REGULA

Section 2: Partial Difference Sets and Strongly Regular Graphs

D is called the connection set of (G, E).

Proposition 2 (MA)

A Cayley graph Γ , generated by a subset D of the regular automorphism group G, is a strongly regular graph if and only if D is a **regular** PDS in G.

A subset *D* of *G* is called **trivial** if either $D \cup \{e\}$ or $(G \setminus D)U\{e\}$ is a subgroup of *G*. It is equivalent to say that the Cayley graph generated by $D \setminus \{e\}$ is a union of complete graphs or its complement. Otherwise, *D* is called **nontrivial**.

Proposition 3 (MA)

Let D be a regular (v, k, λ, μ) – PDS with D \neq G \ {e}. Then D is nontrivial if and only if $1 \le \mu \le k - 1$.

Section 3: Connection with Bent Functions

• Let
$$D_i = \{x : x \in \mathbb{F}^*_{3^{2m}} | f(x) = i\}$$

Theorem 6 (Tan, Pott and Fang)

Let $f : \mathbb{F}_{3^{2m}} \to \mathbb{F}_3$ be a weakly regular ternary bent function such that f(x) = f(-x) and f(0) = 0. Then the subsets D_0, D_1 and D_2 of $\mathbb{F}_{3^{2m}}$ are partial difference sets with certain parameters.

 After a short time, Chee, Tan and Zhang generalize this work by using weakly regular *p*-ary bent functions to construct. strongly regular graphs.

イロト イボト イヨト イヨト 二日

• Let us define the following sets:

•
$$D = \{x : x \in \mathbb{F}_{p^{2m}}^* | f(x) = 0\}$$

- $D_N = \{x : x \in \mathbb{F}_{p^{2m}}^* | f(x) \text{ is non square} \}$
- $D_S = \{x : x \in \mathbb{F}_{p^{2m}}^* | f(x) \text{ is non zero square} \}$

Theorem 7 (Chee, Tan and Zhang)

Let $f : \mathbb{F}_{p^{2m}} \to \mathbb{F}_p$ be a weakly regular bent function such that f(x) = f(-x) and f(0) = 0. If there exists an integer I with (I - 1, p - 1) = 1 such that $f(ax) = a^I f(x)$ for any $a \in \mathbb{F}_p$ and $x \in \mathbb{F}_{p^{2m}}$, then the sets D, D_N, D_S are regular partial difference sets with certain parameters

• **Remark 4 ([4]) :** "By using MAGMA, we know that the sets D, D_N, D_S are not PDS for non weakly regular bent function $f(x) = Tr(w^7 x^{98})$ over \mathbb{F}_{3^6} , where *w* is a primitive element of \mathbb{F}_{3^6} . This implies that the weakly regular condition is necessary."

イロト イボト イヨト イヨト 二日

• Question: What if we change the sets?

Section 3: Connection with Bent Functions

- Let *f* : F_{3ⁿ} → F₃ be a non weakly regular bent function such that *f*(*x*) = *f*(-*x*)
- We divide \mathbb{F}_{3^n} into two subsets as follows.

$$B_0 := \{ w : w \in \mathbb{F}_p^n \mid f(x) + w.x \text{ is type +} \}$$
(1)

$$B_1 := \{ w : w \in \mathbb{F}_p^n \mid f(x) + w.x \text{ is type -} \}$$
(2)

- Observe that f(x) = f(-x) for all x ∈ F_{3ⁿ} implies f(x) = f(-x) for all x ∈ F_{3ⁿ}
- Therefore $B_0 = -B_0$ and $B_1 = -B_1$
- By definition $0 \in B_0$ if f is type + and $0 \in B_1$ if f is type -

Theorem 8 (Özbudak, Pelen)

Let $f : \mathbb{F}_{3^n} \to \mathbb{F}_3$ be a non weakly regular bent function such that f(x) = f(-x) Then the sets B_0^* and B_1^* are partial difference sets with certain parameters.

By using magma we have obtained the following sporadic examples corresponding to Theorem 8.

Example 9

 $g_1 : \mathbb{F}_{3^6} \to \mathbb{F}_3, g_1(x) = Tr_6(\lambda^7 x^{98})$ is non-weakly regular **(Type–)**. Dual of g_1 is not bent and corresponding partial difference sets and strongly regular graphs are non trivial.

- *B*₀ is a (729, 504, 351, 342)-PDS in 𝔽₃₆
- *B*^{*}₁ is a (729, 224, 62, 71)-PDS in 𝔽₃⁶

 $g_2 : \mathbb{F}_{3^4} \to \mathbb{F}_3, g_2(x) = Tr_4(a_0 x^{22} + x^4)$ is non-weakly regular, where $a_0 \in \{\lambda^{10}, -\lambda^{10}, \lambda^{30}, -\lambda^{30}\}$ (**Type**+). Dual of g_2 is not bent. B_0 is an subgroup of \mathbb{F}_{3^4} and so corresponding partial difference sets and strongly regular graphs are trivial.

イロト イボト イヨト イヨト 二日

- B_0^* is a (81, 26, 25, 0)-PDS in \mathbb{F}_{3^4}
- B_1 is a (81, 54, 27, 54)-PDS in \mathbb{F}_{3^4}

 $g_3 : \mathbb{F}_{3^3} \to \mathbb{F}_3, g_3(x) = Tr_3(x^{22} + x^8)$ is non-weakly regular **(Type+)**. It is self dual. B_0 is an subgroup of \mathbb{F}_{3^3} and so corresponding partial difference sets and strongly regular graphs are trivial.

・ロト ・ 日 ト ・ 日 ト ・ 日

- *B*^{*}₀ is a (27, 8, 7, 0)-PDS in 𝔽_{3³}
- *B*₁ is a (27, 18, 9, 18)-PDS in 𝔽_{3³}

 $g_4 : \mathbb{F}_{3^6} \to \mathbb{F}_3, g_4(x) = Tr_6(\lambda x^{20} + \lambda^{41} x^{92})$ is non-weakly regular **(Type–)**.Dual of g_4 is bent. Since B_1 is an subgroup of \mathbb{F}_{3^6} and so corresponding partial difference sets and strongly regular graphs are trivial.

イロト イヨト イヨト イヨト 二日

- B_0 is a (729, 648, 567, 648)-PDS in \mathbb{F}_{3^6}
- B_1^* is a (729, 80, 79, 0)-PDS in \mathbb{F}_{3^6}

 $g_5 : \mathbb{F}_{3^6} \to \mathbb{F}_3, g_5(x) = Tr_6(\lambda^7 x^{14} + (\lambda^{35} x^{70}))$ is non-weakly regular **(Type**–). Dual of g_5 is not bent. Corresponding partial difference sets are non trivial.

- B₀ is a (729, 504, 351, 342)- regular PDS in 𝔽_{3⁶}
- B_1^* is a (729, 224, 62, 71)- regular PDS in \mathbb{F}_{3^6}

Remark 14

Non trivial strongly regular graphs correspond to g_1 and g_5 are from a unital: projective 9 – ary [28,3] code with weights 24,27; $VO^-(6,3)$ affine polar graph. (See [2])

Definition 15 (Association Scheme)

Let *V* be a finite set of vertices, and let $\{R_0, R_1, \ldots, R_d\}$ be binary relations on *V* with $R_0 := \{(x, x) : x \in V\}$. The configuration $(V; R_0, R_1, \ldots, R_d)$ is called an association scheme of class *d* on *V* if the following holds:

•
$$V \times V = R_0 \cup R_1 \cup \cdots \cup R_d$$
 and $R_i \cap R_j =$ for $i \neq j$.

2
$$R_i^t = R_{i'}$$
 for some $i' \in \{0, 1, ..., d\}$, where $R_i^t := \{(x, y) | (y, x) \in R_i\}$. If $i' = i$, we call R_i is symmetric.

● For *i*, *j*, *k* ∈ {0, 1, ..., *d*} and for any pair $(x, y) \in R_k$, the number #{ $z \in V$ | $(x, z) \in R_i$, $(z, y) \in R_j$ } is a constant, which is denoted by p_{ii}^k .

An association scheme is said to be symmetric if every R_i is symmetric.

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIVE

Definition 16 (Translation Scheme)

 $\Gamma_i := (G, E_i), \ 1 \le i \le d$: Cayley graphs on an abelian group *G*. D_i : connection sets of (G, E_i) $D_0 := \{0\}.$

 $(G, \{D_i\}_{i=0}^d)$ is called a translation scheme if $(G, \{\Gamma_i\}_{i=0}^d)$ is an association scheme.

Given a d- class translation scheme $(X, \{R_i\}_{i=0}^d)$, we can take union of classes to form graphs with larger edge sets which is called a fusion.

Remark 17 (Fusion Scheme)

Note that if the fusion gives a translation scheme again, it is called **fusion scheme**. However, it is not the case everytime.

- \mathbb{F}_q : the finite field of order q
- \mathbb{F}_q^* : the multiplicative group of \mathbb{F}_q
- S : be a subgroup of \mathbb{F}_q^* s.t. S = -S

Definition 18 (Cylotomic Scheme)

The partition $\mathbb{F}_q^* \setminus S$ of \mathbb{F}_q^* gives a translation scheme on $(\mathbb{F}_q, +)$, called a cyclotomic scheme.

Each coset (called a cyclotomic coset) of $\mathbb{F}_q^* \setminus S$ is expressed as

$$S_i^{(N,q)} = \gamma^i \langle \gamma^N \rangle, \quad 0 \le i \le N-1,$$

where N|q - 1 is a positive integer and γ is a fixed primitive element of \mathbb{F}_q^*

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIV

• Let $q = p^n$. The functions $\Psi_a : \mathbb{F}_q \mapsto \mathbb{C}^*$, $a \in F_q$, defined by

$$\Psi_a(x) = \epsilon_p^{\operatorname{Tr}_{q\setminus p}(ax)}$$

are all additive characters of \mathbb{F}_q .

- Note that $\Psi_a(x) = \Psi_1(ax)$ and $\overline{\Psi_a(x)} = \Psi_a(-x)$.
- Eigenvalues of the cylotomic schemes are given by Ψ_a(S^(N,q)_i), Ψ_a ∈ Ĝ (Group of additive characters), called Gauss periods.
- Observe that , $\Psi_a(S_i^{(N,q)}) = \Psi_1(S_{i+t}^{(N,q)})$ for any $a \in S_t^{(N,q)}$.

• Write $\eta_i = \Psi_1(S_i^{(N,q)})$. Then, the first eigenmatrix of the cyclotomic scheme is given by

$$\begin{pmatrix} 1 & \frac{q-1}{n} & \frac{q-1}{n} & \frac{q-1}{n} & \dots & \frac{q-1}{n} \\ 1 & \eta_0 & \eta_1 & \eta_2 & \dots & \eta_{N-1} \\ 1 & \eta_2 & \eta_3 & \eta_4 & \dots & \eta_0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & \eta_{N-1} & \eta_0 & \eta_1 & \dots & \eta_{N-2} \end{pmatrix}$$

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIV

- It is an interesting problem to determine fusion schemes of a N−class cyclotomic scheme on F_q,
- Let X_j , j = 1, 2, ..., d: a partition of \mathbb{Z}_N
- The Bannai-Muzychuk criterion (See [1, 10]) implies that $\bigcup_{i \in X_j} S_i^{(N,q)}$ forms a translation scheme iff \exists a partition Y_h , h = 1, 2, ..., d of \mathbb{Z}_N s.t. each $\Psi_1(\gamma^a \bigcup_{i \in X_j} S_i^{(N,q)})$ is const. according to $a \in Y_h$.

- Let us consider 2–class fusion schemes (strongly regular graphs) of cyclotomic schemes of order N = pⁿ⁻¹/p-1.
- $T_0 := \{ \log_{\gamma} x (mod \ N) | Tr_{p^n \setminus p}(x) = 0, \ x \neq 0 \}.$
- X : a subset of Z_N
- When is $\Gamma = Cay(\bigcup_{i \in X} S_i^{(N,p^n)})$ strongly regular?
- Γ is strongly regular iff Ψ₁(γ^a ∪_{i∈X} S^(N,q)_i), a = 0, 1, ..., N − 1, take exactly two values.
- Equivalently it has exactly two distinct eigenvalues.

Proposition 4 (Delsarte)

 $Cay(\bigcup_{i \in X} S_i^{(N,p^n)})$ is strongly regular iff $|X \cap (T_0 - a)|$, $a \in \mathbb{Z}_N$, take exactly two values.

イロン 不良 とくほど 不良 とうほう

- Let $f : \mathbb{F}_{3^n} \to \mathbb{F}_3$ be a non weakly regular bent function such that f(x) = f(-x)
- $q = 3^n$, $N = \frac{3^n 1}{2}$ and γ be a primitive element of $\mathbb{F}_{3^n}^*$. For the simplicity let us use the notation $S_i := S_i^{(N,q)}$

- Obviously, $S_0 = \mathbb{F}_3^*$ and $S_a = \{\gamma^a, -\gamma^a\}$ for all $a \in \mathbb{Z}_N$
- Observe that $B_0^* \cup B_1^* = \bigcup_{a \in \mathbb{Z}_N} S_a$
- Let us define the following disjoint sets

$$X_0 := \{a : a \in Z_N \mid S_a \subset B_0^*\}$$

$$X_1 := \{a : a \in Z_N \mid S_a \subset B_1^*\}$$

• Clearly
$$X_0 \cup X_1 = \mathbb{Z}_N$$
.

Lemma 19

For all $i \in \{0, 1\}$, $|X_i \cap (T_0 - a)|$, $a \in \mathbb{Z}_N$, take exactly two values.

Proof.

We use character sums such as Gauss and Jacobi sums. Since it has many details we find appropriate to skip it here.

Remark 20

Indeed, lemma 19 implies, the sets B_0^* and B_1^* are two intersection sets in PG(n - 1, 3) which correspond to two weight projective codes.

Corollary 21

The partition of $\mathbb{F}_{3^n}^*$ with respect to signs of the Walsh transform of a non weakly regular ternary bent function having the property f(x) = f(-x) gives 2–class fusion scheme of the $\frac{3^n-1}{2}$ –class cyclotomic scheme on \mathbb{F}_{3^n}

イロト イヨト イヨト イヨト 三日

Takk for din interesse . . .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへぐ

FERRUH ÖZBUDAK AND RUMI MELIH PELEN MIDDLE EAST TECHNICAL UNIVE

- E. Bannai, Subschemes of some association schemes, J. Algebra 144 (1991) 167188.
- Brouwer, A.: Web database of strongly regular graphs. http://www.win.tue.nl/ aeb/graphs/srg/srgtab.html (online)
- A. Cesmelioglu W. Meidl A. Pott "On the dual of (non)-weakly regular bent functions and self-dual bent functions" Adv. Math. Commun. vol. 7 no. 4 pp. 425-440 2013.
- Chee, Y.M., Tan, Y. Zhang, X.D. J Algebr Comb (2011) 34: 251. https://doi.org/10.1007/s10801-010-0270-4
- T. Feng, K. Momihara, Q. Xiang, Constructions of strongly regular Cayley graphs and skew Hadamard difference sets from cyclotomic classes, Combinatorica, 35 (2015), pp. 413434.

イロト イボト イヨト イヨト 二日

- T. Helleseth and A. Kholosha, Monomial and quadratic bent functions over the finite fields of odd characteristic, IEEE Trans. Inf. Theory, vol.52, no. 5, pp. 20182032, May 2006.
- T. Ikuta, A. Munemasa, Pseudocyclic association schemes and strongly regular graphs, European J. Combin. 31 (2010), 1513-1519.
- P. V. Kumar R. A. Scholtz L. R. Welch "Generalized bent functions and their properties" J. Combinat. Theory A vol. 40 no. 1 pp. 90-107 1985.
- Ma, S.L. Des Codes Crypt (1994) 4: 221. https://doi.org/10.1007/BF01388454
- M.E. Muzychuk, V-rings of permutation groups with invariant metric, Ph.D. Thesis, Kiev State University, 1987.
- Nyberg K. (1991) Constructions of bent functions and difference sets. In: Damgrd I.B. (eds) Advances in Cryptology

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ○ ○

EUROCRYPT 90. EUROCRYPT 1990. Lecture Notes in Computer Science, vol 473. Springer, Berlin, Heidelberg

- F. Özbudak, R.M.Pelen "Duals of non weakly regular bent functions are not weakly regular and generalization to plateaued functions", preprint,2017.
- O. S. Rothaus "On bent functions" J. Combinat. Theory A vol. 20 no. 3 pp. 300-305 197
- Yin Tan, Alexander Pott, Tao Feng, Strongly regular graphs associated with ternary bent functions, Journal of Combinatorial Theory, Series A, Volume 117, Issue 6, 2010, Pages 668-682.
- Yin Tan, Jing Yang, Xiao Zhang, "A recursive construction of p-ary bent functions which are not weakly regular", Information Theory and Information Security (ICITIS) 2010 IEEE International Conference on, pp. 156-159, 2010.