On CCZ-Equivalence, Extended-Affine Equivalence and Function Twisting

Anne Canteaut, Léo Perrin

June 18, 2018 BFA'2018

 $F: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{m} \text{ and } G: \mathbb{F}_{2}^{n} \to \mathbb{F}_{2}^{m} \text{ are } C(arlet)\text{-}C(harpin)\text{-}Z(inoviev) equivalent if}$ $\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = L\left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = L(\Gamma_{F}),$ where $L: \mathbb{F}_{2}^{n+m} \to \mathbb{F}_{2}^{n+m}$ is an affine permutation.

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = L\left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = L(\Gamma_{F}),$$

where $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and *G* are *E*(*xtented*) *A*(*ffine*) *equivalent* if $G(x) = (B \circ F \circ A)(x) + C(x)$, where *A*, *B*, *C* are affine and *A*, *B* are permutations; so that

$$\left\{(x,G(x)),\forall x\in\mathbb{F}_2^n\right\} = \left[\begin{array}{cc}A^{-1} & 0\\CA^{-1} & B\end{array}\right]\left(\left\{(x,F(x)),\forall x\in\mathbb{F}_2^n\right\}\right).$$

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = L\left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = L(\Gamma_{F}),$$

where $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and *G* are *E*(*xtented*) *A*(*ffine*) *equivalent* if $G(x) = (B \circ F \circ A)(x) + C(x)$, where *A*, *B*, *C* are affine and *A*, *B* are permutations; so that

$$\left\{(x,G(x)),\forall x\in\mathbb{F}_2^n\right\} = \left[\begin{array}{cc}A^{-1} & 0\\CA^{-1} & B\end{array}\right]\left(\left\{(x,F(x)),\forall x\in\mathbb{F}_2^n\right\}\right) \,.$$

Affine permutations with such linear part are **EA-mappings**; their transposes are **TEA-mappings**

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are C(arlet)-C(harpin)-Z(inoviev) equivalent if

$$\Gamma_{G} = \left\{ (x, G(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} = L\left(\left\{ (x, F(x)), \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = L(\Gamma_{F}),$$

where $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ is an affine permutation.

Definition (EA-Equivalence; EA-mapping)

F and *G* are *E*(*xtented*) *A*(*ffine*) *equivalent* if $G(x) = (B \circ F \circ A)(x) + C(x)$, where *A*, *B*, *C* are affine and *A*, *B* are permutations; so that

$$\left\{(x,G(x)),\forall x\in\mathbb{F}_2^n\right\} = \left[\begin{array}{cc}A^{-1} & 0\\CA^{-1} & B\end{array}\right]\left(\left\{(x,F(x)),\forall x\in\mathbb{F}_2^n\right\}\right) \,.$$

Affine permutations with such linear part are **EA-mappings**; their transposes are **TEA-mappings**

What is the relation between functions that are CCZ- but not EA-equivalent?

Admissible Mapping

For $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the affine permutation *L* is **admissible for F** if

$$L(\{(x, F(x)), \forall x \in \mathbb{F}_2^n\}) = \{(x, G(x)), \forall x \in \mathbb{F}_2^n\}$$

for a well defined function $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$.

Admissible Mapping

For $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, the affine permutation *L* is **admissible for F** if

$$L(\{(x, F(x)), \forall x \in \mathbb{F}_2^n\}) = \{(x, G(x)), \forall x \in \mathbb{F}_2^n\}$$

for a well defined function $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$.

Definition (LAT/Walsh Spectrum)

The L(inear) A(pproximation) T(able) of $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is

$$\mathcal{W}_{F}(\alpha,\beta) = \sum_{x\in\mathbb{F}_{2}^{n}} (-1)^{\alpha\cdot x+\beta\cdot F(x)}.$$

0 - CCZ-Equivalence ; Bijectivity

CCZ-Equivalence and Vector Spaces of O

Partitioning a CCZ-Class into EA-Classes

Outline

1 CCZ-Equivalence and Vector Spaces of 0

- Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

Plan of this Section

- 1 CCZ-Equivalence and Vector Spaces of 0
 - Vector Spaces of Zeroes
 - Partitioning a CCZ-Class into EA-Classes
- 2 Function Twisting
- 3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
- 4 Conclusion

CC2-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CC2-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

Walsh Zeroes

For all $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathcal{W}_{F}(\alpha, 0) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{\alpha \cdot x + 0 \cdot F(x)} = 0.$$

Walsh Zeroes

For all $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathcal{W}_{F}(\alpha, 0) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{\alpha \cdot x + 0 \cdot F(x)} = 0.$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is the set

$$\mathcal{Z}_F = \left\{ u \in \mathbb{F}_2^n imes \mathbb{F}_2^m, \mathcal{W}_F(u) = 0
ight\} \cup \left\{ 0
ight\}.$$

With $\mathcal{V} = \{(x, 0), \forall x \in \mathbb{F}_2^n\} \subset \mathbb{F}_2^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_{F}$.

Walsh Zeroes

For all $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$, we have

$$\mathcal{W}_{F}(\alpha, 0) = \sum_{x \in \mathbb{F}_{2}^{n}} (-1)^{\alpha \cdot x + 0 \cdot F(x)} = 0.$$

Definition (Walsh Zeroes)

The Walsh zeroes of $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is the set

$$\mathcal{Z}_F = \left\{ u \in \mathbb{F}_2^n imes \mathbb{F}_2^m, \mathcal{W}_F(u) = 0
ight\} \cup \left\{ 0
ight\}.$$

With $\mathcal{V} = \{(x, 0), \forall x \in \mathbb{F}_2^n\} \subset \mathbb{F}_2^{n+m}$, we have $\mathcal{V} \subset \mathcal{Z}_F$.

Note that if $\Gamma_G = L(\Gamma_F)$, then $\mathcal{Z}_G = (L^T)^{-1}(\mathcal{Z}_F)$.

CC2-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CC2-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

Admissibility for F

Lemma

Let $L : \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ be a linear permutation. It is admissible for $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ if and only if

 $L^{T}(\mathcal{V}) \subseteq \mathcal{Z}_{F}$

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

 \Rightarrow no zeroes outside of ${\mathcal V}$

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

- \implies no zeroes outside of ${\mathcal V}$
- \implies no vector spaces of zeroes other than ${\mathcal V}$

Admissibility of EA-mappings

EA-mappings are admissible for all $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$:

$$\begin{bmatrix} A & 0 \\ C & B \end{bmatrix}^{T} (\mathcal{V}) = \begin{bmatrix} A^{T} & C^{T} \\ 0 & B^{T} \end{bmatrix} \left(\left\{ \begin{bmatrix} x \\ 0 \end{bmatrix}, \forall x \in \mathbb{F}_{2}^{n} \right\} \right) = \mathcal{V}.$$

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of a bent function contains only its EA-class.

Proof.

A function is bent

- \implies no zeroes outside of ${\mathcal V}$
- \implies no vector spaces of zeroes other than ${\mathcal V}$
- ⇒ only 1 EA-class

CC2-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CC2-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

Permutations

We define

$$\mathcal{V}^{\perp} = \{(0, y), \forall y \in \mathbb{F}_2^m\} \subset \mathbb{F}_2^{n+m}.$$

Lemma

 $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ is a permutation if and only if

 $\mathcal{V}^{\perp} \subset \mathcal{Z}_{F}$.

EA-classes imply vector spaces

Lemma

let F, G and G' be such that $\Gamma_G = L(\Gamma_F)$ and $\Gamma_{G'} = L'(\Gamma_F)$. If $L(\mathcal{V}) = L'(\mathcal{V})$, then G and G' are EA-equivalent.

EA-classes imply vector spaces

Lemma

let F, G and G' be such that $\Gamma_G = L(\Gamma_F)$ and $\Gamma_{G'} = L'(\Gamma_F)$. If $L(\mathcal{V}) = L'(\mathcal{V})$, then G and G' are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

EA-classes imply vector spaces

Lemma

let F, G and G' be such that $\Gamma_G = L(\Gamma_F)$ and $\Gamma_{G'} = L'(\Gamma_F)$. If $L(\mathcal{V}) = L'(\mathcal{V})$, then G and G' are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!

1 EA-class \implies 1 vector space of zeroes of dimension *n* in \mathbb{Z}_n

EA-classes imply vector spaces

Lemma

let F, G and G' be such that $\Gamma_G = L(\Gamma_F)$ and $\Gamma_{G'} = L'(\Gamma_F)$. If $L(\mathcal{V}) = L'(\mathcal{V})$, then G and G' are EA-equivalent.

Can we use this knowledge to partition a CCZ-class into its EA-classes?

The Lemma gives us hope!

1 EA-class \implies 1 vector space of zeroes of dimension *n* in \mathbb{Z}_n

Reality takes it back...

The converse of the lemma is wrong.

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

٠

Counter-example

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation and let

$$M_n = \left[\begin{array}{cc} 0 & I_n \\ I_n & 0 \end{array} \right]$$

It holds that

$$\begin{split} \Gamma_{F^{-1}} &= \left\{ \left(x, F(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), \left(F \circ F^{-1} \right)(y) \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), y \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= M_{n}(\Gamma_{F}) \,. \end{split}$$

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

٠

Counter-example

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation and let

$$\mathsf{M}_n = \left[\begin{array}{cc} \mathsf{0} & \mathsf{I}_n \\ \mathsf{I}_n & \mathsf{0} \end{array} \right]$$

It holds that

$$\begin{split} \Gamma_{F^{-1}} &= \left\{ \left(x, F(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), \left(F \circ F^{-1} \right)(y) \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), y \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= M_{n}(\Gamma_{F}) \,. \end{split}$$

The contradiction

If F is an involution then $\Gamma_F = \Gamma_{F^{-1}} = M_n(\Gamma_F)$

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

٠

Counter-example

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation and let

$$\mathsf{M}_n = \left[\begin{array}{cc} \mathsf{0} & \mathsf{I}_n \\ \mathsf{I}_n & \mathsf{0} \end{array} \right]$$

It holds that

$$\begin{split} \Gamma_{F^{-1}} &= \left\{ \left(x, F(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), \left(F \circ F^{-1} \right)(y) \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), y \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= M_{n}(\Gamma_{F}) \,. \end{split}$$

The contradiction

If *F* is an involution then $\Gamma_F = \Gamma_{F^{-1}} = M_n(\Gamma_F)$ $\implies M_n(\mathcal{V}) = \mathcal{V}^{\perp} \neq I_n(\mathcal{V})$
CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

.

Counter-example

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a permutation and let

$$\mathsf{M}_{n} = \left[\begin{array}{cc} 0 & I_{n} \\ I_{n} & 0 \end{array} \right]$$

It holds that

$$\begin{split} \Gamma_{F^{-1}} &= \left\{ \left(x, F(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), \left(F \circ F^{-1} \right)(y) \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= \left\{ \left(F^{-1}(y), y \right), \forall y \in \mathbb{F}_{2}^{n} \right\} \\ &= M_{n}(\Gamma_{F}) \,. \end{split}$$

The contradiction

If F is an involution then $\Gamma_F = \Gamma_{F^{-1}} = M_n(\Gamma_F)$

 \implies $M_n(\mathcal{V}) = \mathcal{V}^{\perp} \neq I_n(\mathcal{V})$

... but M_n and I_n send Γ_F in the same EA-class

(namely that of F).

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ are the affine permutations L of \mathbb{F}_2^{n+n} such that

 $L(\Gamma_F) = \Gamma_F$.

Vector Spaces of Zeroes Partitioning a CCZ-Class into EA-Classes

Making the converse work (1/2)

Definition (CCZ-invariants)

The CCZ-invariants of $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ are the affine permutations L of \mathbb{F}_2^{n+n} such that

 $L(\Gamma_F) = \Gamma_F \, .$

Examples

- For an involution, M_n is a CCZ-invariant.
- For a quadratic function q, there are CCZ-invariants with the following linear parts:

$$\begin{bmatrix} I_n & 0\\ \Delta_\alpha q & I_n \end{bmatrix}.$$

Making the converse work (2/2)

Theorem (Number of EA-classes)

For $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, let:

- **s**_F be the number of vector spaces of dimension **n** in Z_F
- c_F be the number of CCZ-invariants of F
- e_F be the number of EA-classes in the CCZ-class of F.

Making the converse work (2/2)

Theorem (Number of EA-classes)

For $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, let:

- **s**_F be the number of vector spaces of dimension **n** in Z_F
- c_F be the number of CCZ-invariants of F
- e_F be the number of EA-classes in the CCZ-class of F.

Then

$$\frac{s_F}{c_F} \leq e_F \leq s_F \, .$$

Making the converse work (2/2)

Theorem (Number of EA-classes)

For $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, let:

s_F be the number of vector spaces of dimension **n** in Z_F

- c_F be the number of CCZ-invariants of F
- e_F be the number of EA-classes in the CCZ-class of F.

Then

$$\frac{\mathsf{s}_F}{\mathsf{c}_F} \le \mathsf{e}_F \le \mathsf{s}_F \,.$$

Corollary

If $c_F = 1$, then we do have a bijection between EA-classes and vector spaces of 0 of dimension n in \mathcal{Z}_F .

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion The Twist CCZ = EA + Twist Revisiting some Results

Outline

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

CCZ-Equivalence and Vector Spaces of 0

- 2 Function Twisting
 - The Twist
 - CCZ = EA + Twist
 - Revisiting some Results

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

EA-equivalence is a simple sub-case of CCZ-Equivalence...

EA-equivalence is a simple sub-case of CCZ-Equivalence...

What must we add to EA-equivalence to fully describe CCZ-Equivalence?

Definition of the Twist

Any function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ can be projected on $\mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$.

Definition of the Twist

Any function $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ can be projected on $\mathbb{F}_2^t \times \mathbb{F}_2^{m-t}$.

If *T* is a permutation for all secondary inputs, then we define the *t*-twist equivalent of *F* as *G*, where

$$G(x,y) = (T_{y}^{-1}(x), U_{T_{y}^{-1}(x)}(y))$$

for all $(x, y) \in \mathbb{F}_2^t \times \mathbb{F}_2^{n-t}$.

Examples of Twisting

Inversion is an *n*-twist.

Examples of Twisting

- Inversion is an *n*-twist.
- Open and closed butterflies operating on n bits are obtained from another with an (n/2)-twist.

Examples of Twisting

- Inversion is an *n*-twist.
- Open and closed butterflies operating on n bits are obtained from another with an (n/2)-twist.
- Some degenerate cases exist for t = m and n = n.

Examples of Twisting

- Inversion is an *n*-twist.
- Open and closed butterflies operating on n bits are obtained from another with an (n/2)-twist.
- Some degenerate cases exist for t = m and n = n.

t = m (start) t = m (end) t = n (start) t = n (end)

٠

Swap Matrices

The swap matrix permuting \mathbb{F}_2^{n+m} is defined for $t \leq \min(n, m)$ as

$$M_t = \begin{bmatrix} 0 & 0 & I_t & 0 \\ 0 & I_{n-t} & 0 & 0 \\ I_t & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{m-t} \end{bmatrix}$$

٠

Swap Matrices

The swap matrix permuting \mathbb{F}_2^{n+m} is defined for $t \leq \min(n, m)$ as

$$M_t = \begin{bmatrix} 0 & 0 & I_t & 0 \\ 0 & I_{n-t} & 0 & 0 \\ I_t & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{m-t} \end{bmatrix}$$

It has a simple interpretation:

Swap Matrices

The swap matrix permuting \mathbb{F}_2^{n+m} is defined for $t \leq \min(n,m)$ as

$$M_t = \begin{bmatrix} 0 & 0 & I_t & 0 \\ 0 & I_{n-t} & 0 & 0 \\ I_t & 0 & 0 & 0 \\ 0 & 0 & 0 & I_{m-t} \end{bmatrix}$$

It has a simple interpretation:

For all $t \leq \min(n, m)$, M_t is an orthogonal and symmetric involution.

Swap Matrices and Twisting

Swap Matrices and Twisting

Swap Matrices and Twisting

 $\Gamma_{F} = \left\{ \left(x, F(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\} \qquad \xleftarrow{M_{t}} \qquad \Gamma_{G} = \left\{ \left(x, G(x) \right), \forall x \in \mathbb{F}_{2}^{n} \right\}$

 $\mathcal{W}_{F}(u) = \mathcal{W}_{G}(M_{t}(u))$

CC2-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CC2-Equivalence to a Permutation Conclusion

The Twist CCZ = EA + Twist Revisiting some Results

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

CC2-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CC2-Equivalence to a Permutation Conclusion

The Twist CCZ = EA + Twist Revisiting some Results

Twisting and CCZ-Class

Lemma

Twisting preserves the CCZ-equivalence class.

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

The Twist CCZ = EA + Twist Revisiting some Results

Main Result

Theorem

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^m$ and $G: \mathbb{F}_2^n \to \mathbb{F}_2^m$ are CCZ-equivalent, then

 $\Gamma_{G} = (\underline{B} \times M_{t} \times \underline{A})(\Gamma_{F}),$

where A and B are EA-mappings and where

$$t = \dim \left(proj_{\mathcal{V}^{\perp}} \left((\mathbf{A}^{T} \times \mathbf{M}_{t} \times \mathbf{B}^{T})(\mathcal{V}) \right) \right) \,.$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Main Result

Theorem

If $F:\mathbb{F}_2^n\to\mathbb{F}_2^m$ and $G:\mathbb{F}_2^n\to\mathbb{F}_2^m$ are CCZ-equivalent, then

 $\Gamma_{G} = (\underline{B} \times M_{t} \times \underline{A})(\Gamma_{F}),$

where A and B are EA-mappings and where

$$t = \dim \left(proj_{\mathcal{V}^{\perp}} \left((A^{T} \times M_{t} \times B^{T})(\mathcal{V}) \right) \right) \,.$$

In other words, EA-equivalence and twists are sufficient to fully describe CCZ-equivalence!

Corollary

If a function is CCZ-equivalent but not EA-equivalent to another function, then they have to be EA-equivalent to functions for which a t-twist is possible.

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation Conclusion

The Twist CCZ = EA + Twist Revisiting some Results

Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ such that

$${\sf \Gamma}_{\sf G}={\tt L}({\sf \Gamma}_{\sf F})$$
 and ${\tt L}^{{\sf T}}({\mathcal V})\subset \mathcal{Z}_{\sf F}$.

Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ such that

$${\sf \Gamma}_{\sf G}={\it L}({\sf \Gamma}_{\sf F})$$
 and ${\it L}^{{\scriptscriptstyle T}}({\cal V})\subset {\cal Z}_{\sf F}$.

2. Any vector space V of dimension n such that $\dim(\operatorname{proj}_{\mathcal{V}^{\perp}}(V)) = t$ can be written as

$$V = (A^{T} \times M_{t})(\mathcal{V}),$$

where A is an EA-mapping.

Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ such that

$${\sf \Gamma}_{\sf G}={\sf L}({\sf \Gamma}_{\sf F})$$
 and ${\sf L}^{{\scriptscriptstyle T}}({\mathcal V})\subset \mathcal{Z}_{\sf F}$.

2. Any vector space V of dimension n such that $\dim(\operatorname{proj}_{\mathcal{V}^{\perp}}(V)) = t$ can be written as

$$V = (A^{T} \times M_{t})(\mathcal{V}),$$

where A is an EA-mapping.

1+2. We deduce that $L^{T}(\mathcal{V}) = (A^{T} \times M_{t})(\mathcal{V}) \subset \mathcal{Z}_{F}$.

Proof sketch

1. As F is CCZ-equivalent to G, there is a linear permutation $L: \mathbb{F}_2^{n+m} \to \mathbb{F}_2^{n+m}$ such that

$${\sf \Gamma}_{\sf G}={\it L}({\sf \Gamma}_{\sf F})$$
 and ${\it L}^{{\scriptscriptstyle T}}({\cal V})\subset {\cal Z}_{\sf F}$.

2. Any vector space V of dimension n such that $\dim(\operatorname{proj}_{\mathcal{V}^{\perp}}(V)) = t$ can be written as

$$V = (A^{T} \times M_{t})(\mathcal{V}),$$

where A is an EA-mapping.

1+2. We deduce that $L^{T}(\mathcal{V}) = (A^{T} imes M_{t})(\mathcal{V}) \subset \mathcal{Z}_{F}$.

1+2+lem. As $L^{T}(\mathcal{V}) = (A^{T} \times M_{t})(\mathcal{V})$, the functions G and G' such that $\Gamma_{G} = L(\Gamma_{F})$ and $\Gamma_{G'} = (A^{T} \times M_{t})(\Gamma_{F})$ are EA-equivalent. We conclude that

$$\Gamma_{G} = (B \times M_{t} \times A)(\Gamma_{F}).$$

Usage?

What can we do with this knowledge?

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F : \mathbb{F}_2^n \to \mathbb{F}_2$ is limited to its EA-class.

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F : \mathbb{F}_2^n \to \mathbb{F}_2$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F : \mathbb{F}_2^n \to \mathbb{F}_2$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G

 \implies $F(x||y) = T_y(x), orall (x,y) \in \mathbb{F}_2 imes \mathbb{F}_2^{n-1}$, where T_y is always a permutation of \mathbb{F}_2

Boolean Functions

Theorem (Budaghyan, Carlet (2011))

The CCZ-class of $F : \mathbb{F}_2^n \to \mathbb{F}_2$ is limited to its EA-class.

Proof.

F is CCZ- but not EA-equivalent to some G

$$\implies$$
 $F(x||y) = T_y(x), \forall (x,y) \in \mathbb{F}_2 \times \mathbb{F}_2^{n-1}$, where T_y is always a permutation of \mathbb{F}_2

$$\implies$$
 $F(x||y) = x \oplus f(y), \forall (x, y) \in \mathbb{F}_2 \times \mathbb{F}_2^{n-1},$

- I-twisting F does not change the EA-class
- → it is impossible to leave the EA-class of F

Modular Addition (1/2)

Theorem (Schulte-Geers'13)

Addition modulo 2^m is CCZ-equivalent to

$$q(x,y) = (0, x_0y_0, x_0y_0 + x_1y_1, \dots, x_0y_0 + \dots + x_{n2}y_{n2}),$$

where $\Gamma_{\boxplus} = L(\Gamma_q)$ with

$$L = \begin{bmatrix} I_m & 0 & I_m \\ 0 & I_m & I_m \\ I_m & I_m & I_m \end{bmatrix}.$$
Modular Addition (1/2)

Theorem (Schulte-Geers'13)

Addition modulo 2^m is CCZ-equivalent to

$$q(x,y) = (0, x_0y_0, x_0y_0 + x_1y_1, \dots, x_0y_0 + \dots + x_{n2}y_{n2}),$$

where $\Gamma_{\boxplus} = L(\Gamma_q)$ with

$$L = \begin{bmatrix} I_m & 0 & I_m \\ 0 & I_m & I_m \\ I_m & I_m & I_m \end{bmatrix} \, .$$

It holds that

$$L^{-1} = \underbrace{\begin{bmatrix} I_m & 0 & 0\\ I_m & I_m & 0\\ I_m & 0 & I_m \end{bmatrix}}_{A_1} \times \underbrace{\begin{bmatrix} 0 & 0 & I_m\\ 0 & I_m & 0\\ I_m & 0 & 0 \end{bmatrix}}_{M_m} \times \underbrace{\begin{bmatrix} I_m & 0 & 0\\ I_m & I_m & 0\\ 0 & I_m & I_m \end{bmatrix}}_{A_2}$$

٠

The Twist CCZ = EA + Twist Revisiting some Results

Modular Addition (2/2)

Lemma

Let $T^{\boxplus}_z: \mathbb{F}_2^m \to \mathbb{F}_2^m$ be defined by

$$T_z^{\boxplus}(x) = (x \boxplus (x \oplus z)) \oplus (x \oplus z)$$

Modular Addition (2/2)

Lemma

Let $T_z^{\boxplus} : \mathbb{F}_2^m \to \mathbb{F}_2^m$ be defined by

$$T_z^{\boxplus}(x) = (x \boxplus (x \oplus z)) \oplus (x \oplus z).$$

- T_z^{\bigoplus} is a permutation for all *z*;
- it is EA-equivalent to $(x, y) \mapsto x \boxplus y;$

Modular Addition (2/2)

Lemma

Let $T_z^{\boxplus} : \mathbb{F}_2^m \to \mathbb{F}_2^m$ be defined by

$$T_z^{\boxplus}(x) = (x \boxplus (x \oplus z)) \oplus (x \oplus z).$$

T $_{z}^{\boxplus}$ is a permutation for all *z*;

• it is EA-equivalent to $(x, y) \mapsto x \boxplus y;$

$$(x,z) \mapsto T_z^{\boxplus}(x) \text{ has algebraic degree } m;$$

• $(x,z) \mapsto (T_z^{\boxplus})^{-1}(x)$ is quadratic!

Modular Addition (2/2)

Lemma

Let $T_z^{\boxplus} : \mathbb{F}_2^m \to \mathbb{F}_2^m$ be defined by

$$T_z^{\boxplus}(x) = (x \boxplus (x \oplus z)) \oplus (x \oplus z).$$

- T[⊞]_z is a permutation for all *z*;
- it is EA-equivalent to $(x, y) \mapsto x \boxplus y;$

• $(x,z) \mapsto (T_z^{\boxplus})^{-1}(x)$ is quadratic!

Let $v = T_z^{\boxplus}(x)$. Then:

$$\begin{cases} v_0 &= x_0 \\ v_{i+1} &= x_i + x_{i+1} + v_i z_i \end{cases} \text{ and, convertly, } \begin{cases} x_0 &= v_0 \\ x_{i+1} &= x_i + v_{i+1} + v_i z_i \end{cases}$$

Outline

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

2 Function Twisting

- 3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation
 - Efficient Criteria
 - Applications to APN Functions

4 Conclusion

Another Problem

How do we know if a function is CCZ-equivalent to a permutation?

Remainder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_F$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_F$.

Remainder

Recall that F is a permutation if and only if $\mathcal{V} \subset \mathcal{Z}_F$ and $\mathcal{V}^{\perp} \subset \mathcal{Z}_F$.

Lemma

G is CCZ-equivalent to a permutation if and only if

$$V = L(\mathcal{V}) \subset \mathcal{Z}_{\mathsf{G}}$$
 and $V' = L(\mathcal{V}^{\perp}) \subset \mathcal{Z}_{\mathsf{G}}$

for some linear permutation L. Note that

$$span(V \cup V') = \mathbb{F}_2^n \times \mathbb{F}_2^m$$
.

3-Spaces Criteria

3-space criteria

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, not be a permutation. If it is CCZ-equivalent to a permutation then \mathcal{Z}_F must contain at least 3 vector spaces of zeroes of dimension *n*.

Projected Spaces Criteria

Key observation

The projections

$$p:(x,y)\mapsto x ext{ and } p':(x,y)\mapsto y$$

mapping $\mathbb{F}_2^n \times \mathbb{F}_2^m$ to \mathbb{F}_2^n and \mathbb{F}_2^m respectively are linear.

Projected Spaces Criteria

Key observation

The projections

$$p:(x,y)\mapsto x$$
 and $p':(x,y)\mapsto y$

mapping $\mathbb{F}_2^n \times \mathbb{F}_2^m$ to \mathbb{F}_2^n and \mathbb{F}_2^m respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V) and p(V') are subspaces of \mathbb{F}_2^n whose span is \mathbb{F}_2^n .

Projected Spaces Criteria

Key observation

The projections

$$p:(x,y)\mapsto x$$
 and $p':(x,y)\mapsto y$

mapping $\mathbb{F}_2^n \times \mathbb{F}_2^m$ to \mathbb{F}_2^n and \mathbb{F}_2^m respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V) and p(V') are subspaces of \mathbb{F}_2^n whose span is \mathbb{F}_2^n .

We deduce that dim $(p(V)) + \dim (p(V')) \ge n$

Projected Spaces Criteria

Key observation

The projections

$$p:(x,y)\mapsto x$$
 and $p':(x,y)\mapsto y$

mapping $\mathbb{F}_2^n \times \mathbb{F}_2^m$ to \mathbb{F}_2^n and \mathbb{F}_2^m respectively are linear.

Thus, If G is CCZ-equivalent to a permutation then p(V) and p(V') are subspaces of \mathbb{F}_2^n whose span is \mathbb{F}_2^n .

We deduce that dim $(p(V)) + \dim (p(V')) \ge n$

Projected Spaces Criteria

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ is CCZ-equivalent to a permutation, then there are at least two subspaces of dimension n/2 in $p(\mathcal{Z}_F)$ and in $p'(\mathcal{Z}_F)$.

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from *"QAM"* (matrices).

Yu et al. (DCC'14) generated 8180 8-APN quadratic functions from *"QAM"* (matrices).

None of them are CCZ-equivalent to a permutation

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$f_k: x \mapsto x^{2^k+1} + (x + x^{2^{n/2}})^{2^k+1}$$

for n = 4t. They have the subspace property of the Kim mapping.

Göloğlu's Candidates (1/2)

Göloğlu's introduced APN functions

$$f_k: x \mapsto x^{2^k+1} + (x + x^{2^{n/2}})^{2^k+1}$$

for n = 4t. They have the subspace property of the Kim mapping.

Unfortunately, f_k are not equivalent to permutations on n = 4, 8 and does not **seem** to be equivalent to one on n = 12 (we say "it does not seem to be equivalent to a permutation" since checking the existence of CCZ-equivalent permutations **requires huge amount of computing** and is infeasible on n = 12; our program was still running at the time of writing).

Göloğlu's Candidates (2/2)

n	cardinal proj.	time proj. (s)	time BasesExtraction (s)
12	1365	0.066	0.0012
16	21845	16.79	0.084
20	349525	10096.00	37.48

Time needed to show that f_k is **not** CCZ-equivalent to a permutation.

Outline

- 2 Function Twisting
- 3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

Plan of this Section

2 Function Twisting

3 Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation

4 Conclusion

- Summary
- Open Problems

CCZ-Equivalence and Vector Spaces of O Function Twisting Necessary and Efficient Conditions for CCZ-Equivalence to a Permutation **Conclusion**

Summary Open Problems

Conclusion

■ CCZ = EA + Twist, both of which have a simple interpretation.

Conclusion

- CCZ = EA + Twist, both of which have a simple interpretation.
- Efficient criteria to know if a function is CCZ-equivalent to a permutation...
- ... implemented using a very efficient vector space extraction algorithm (not presented)

The Fourier transform solves everything!

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Open Problems

EA-equivalence

How can we efficiently check the EA-equivalence of two functions?

Conjecture

If the CCZ-class of a permutation P is not reduced to the EA-classes of P and P^{-1} , then P has the following decomposition

where both T and U are keyed permutations.