
Computational aspects for the nonlinearity of
Boolean functions

Massimiliano Sala
(with Alessio Meneghetti)

University of Trento

maxsalacodes@gmail.com

BFA 2018 Loen (Norway) - June 19, 2018



Definitions

(F2)n = {v1, . . . , v2n}, f : (F2)n → F2

Algebraic Normal Form: f =
∑

v∈(F2)
n fvX

v , e.g. X (110) = x1x2

(fv1 , fv2 , . . . , fv2n ) ∈ (F2)2
n

Lookup Table: {v → f (v)}

(f (v1), f (v2), . . . , f (v2n)) ∈ (F2)2
n



Evaluation and the binary Moebius transform

fv = f̄ (v)

f =
∑

v∈(F2)
n fvX

v −→ (f (v1), f (v2), . . . , f (v2n))

↑ ↓(
f̄ (v1), f̄ (v2), . . . , f̄ (v2n)

)
←− f̄ =

∑
v∈(F2)

n f (v)X v

Complexity considerations (?)

The computational effort required to go from a representation to
the other is O(n2n) binary operations.

The actual complexity is still unknown.



Affine Functions

α : (F2)n → F2

Algebraic Normal Form: α = a0 + a1x1 + . . .+ anxn

(a0, a1, . . . , an) ∈ (F2)n+1



Nonlinearity of a Boolean function

Distance between functions
The distance d(f , g) between two Boolean functions f and g is
the number of v ∈ (F2)n for which f (v) 6= g(v).

Again

The distance d(f , g) between f and g is the Hamming distance
between the corresponding evaluation vectors.



Nonlinearity of a Boolean function

Nonlinearity

The nonlinearity of f is the minimum of the distances between f
and any affine function α

nl(f ) = min
α

d(f , α)

Maximum nonlinearity

nl(f ) ≤ 2n−1 − 2
n
2
−1

Bent function
f is bent iff nl(f ) = 2n−1 − 2

n
2
−1 .



Decision problems

For any n ≥ 1, let us consider a sequence of sets In.

A decision problem P is a function

∀n, In 7→ {true, false} .

I An element of In is called an instance of the problem P
I n is called the complexity parameter,

I so,
In is also called the set of inputs
(implicitely assuming parameter complexity n).



Example of decision problems

If In is the set of all Boolean functions, we have many interesting
decision problems:

I is f bent?

I is f affine?

I is nl(f ) = 3 ?

From decision problems to other problems

The last example suggests that, in our context, decision problems
may be used as building blocks of any interesting problem.



How to measure complexity

There are many notions of complexity, which I found very
confusing when I started approaching this area.
To measure complexity you have to make some inevitable choices:

I what you are measuring?
I am considering only field operations in F2;
I am not considering the cost of storing memory;

I how much? I am counting as one operation any bit addition,
multiplication or memory reading.

I how to compare
I am using only the big-O notation and for any n I am
considering only worst-case complexity.



Decision problems as Boolean functions

Recall:
A decision problem P is a function

∀n, In 7→ {true, false} .

In our Boolean context, In ⊂ (F2)N , so
a decision problem P is the evaluation of a Boolean function

(F2)N 7→ {true, false} = F2 .

However, the problem is not given in ANF or other convenient
form!



Difficult decision problems

NP-complete

We do not give a formal definition, but believe me that (decision)
NP-complete problems are, in some sense, the most difficult
problems to solve.
If you find an algorithm that solves an NP-complete problem in
strictly less than exponential time, then you have done a major
step in both Mathematics and Computer Science!

An NP-complete problem I love

Given a Boolean function f whose evaluation in each point requires
O(n3) operations, decide whether

f = 1

or equivalently, if f has any root.



A result by Pan

The problem with understanding the actual complexity of problems
is that it is very difficult to find lower bounds:
you must show that any algorithm solving P needs at least xxxx
operations.

Leaving the Boolean world

Let In be the set of all univariate polynomial with complex
coefficient with degree n.
Let us consider the problem P of (exactly) evaluating a polynomial
in any (complex) point, counting (complex) multiplication and
(complex) additions.



A result by Pan II

Theorem (Viktor Y. Pan, 1966)

To solve P you need at least n operations.



Nonlinearity as a Coding Problem

A Reed-Muller code of first order is the linear binary code obtained
by evaluating all affine functions. It is a [2n, n + 1, 2n−1]2 code.

nl(f )←→ decode (f (v1), . . . , f (v2n))

Complexity considerations

If nl(f ) < 2n−2 then we can compute it in O(n3) operations.
Recent works suggest that this bound can be significantly lowered.

The complexity of correcting beyond the distance is not known.
For general linear codes it is NP-hard.



The Walsh transform

f : (F2)n −→ F2

↓

f̂ : (F2)n −→ Z

f̂ (x) =
∑

y∈(F2)
n

(−1)x ·y+f (y)

Complexity considerations

The computation of the Walsh spectrum of f from its evaluation
vector requires O(n2n) integer operations.

Open problem

Faster computation of the Walsh transform.



The Walsh transform

nl(f ) = min
y∈(F2)

n

{
2n−1 − 1

2
f̂ (v)

}
= 2n−1 − max

y∈(F2)
n
f̂ (y)

Complexity considerations

From the evaluation vector, the computation of nl(f ) using the
Walsh transform requires O(n2n) integer operations.
Indeed, we obtain the same asymptotic cost starting from the ANF
of f .



Numerical Normal Form of a function

Let f be a function on {0, 1}n taking values in a field K.
Its representation as a polynomial

f =
∑

v∈{0,1}n
λvX

v ,

where λv ∈ K, is called the Numerical Normal Form (NNF) of f .
Any Boolean function admits a unique NNF.

Complexity Considerations

The NNF of f can be computed from its truth table, and it
requires O(n2n) additions over K.



Multivariate Approach



In 2006 I have started considering the problem of nonlinearity for
Boolean functions, using an approach based on multivariate
polynomials.

Along the way, several researchers have contributed:

Emanuele Bellini, Eleonora Guerrini, Alessio Meneghetti, Theo
Mora, Emmanuela Orsini, Ilaria Simonetti.



Notation

I E [X ] = E [x1, . . . , xN ] = {x21 − x1, . . . , x
2
N − xN}

I MN,t is the set of all square-free monomials of degree t in
F2[x1, . . . , xN ].

I σi is the i-th elementary symmetric function
∑
MN,t

m.

I IN,t = 〈{σt , . . . , σN} ∪ E [X ]〉.
I SN,t is the Hamming Ball, SN,t = {v ∈ (F2)N | wH(v) ≤ t}.
I ϕN,t is the Boolean function vanishing exactly at SN,t−1.



Vanishing Ideal of a Hamming Ball centred at zero

Theorem (Guerrini, Orsini, - )

Let 1 ≤ t ≤ N. The vanishing ideal of SN,t is IN,t+1.
Its reduced Groebner basis G (w.r.t any ordering) is

G = E [X ] ∪MN,t , for t ≥ 2
G = {x1, . . . , xN}, for t = 1.

Theorem (Meneghetti)

In terms of the elementary symmetric functions, the ANF of ϕ
(N)
t

can be computed in O(N logN) operations. Moreover

IN,t = 〈{ϕN,t} ∪ E [X ]〉



Generic affine Boolean functions

Let A = {ai}0≤i≤n be a variable set of n + 1 unknowns.

The polynomial α = a0 +
∑n

i=1 aixi in F2[A, x1, . . . , xn] represents
a generic affine Boolean function in n variables.

Let α be the evaluation vector of α:

α = (α(A, v1), . . . , α(A, v2n)) ∈ (F2[A])2
n

Note that α is a vector of polynomials.



Simonetti’s Ideal

Let Jnt (f ) be the ideal in F2[A] defined by〈{
m
(
α + f̄

)
| m ∈MN,t

}
∪ E [A]

〉
where N = 2n.

Remark
E [A] ⊂ Jnt (f ) ⇒ Jnt (f ) is zero-dimensional and radical.



Simonetti’s Ideal

Lemma (Simonetti, - )

For any 1 ≤ t ≤ 2n the following statements are equivalent:

1. V (Jnt (f )) 6= ∅
2. ∃ u ∈ {ᾱ + f̄ } such that wH(u) ≤ t − 1

3. ∃ α such that d(f , α) ≤ t − 1

Theorem (Simonetti, - )

nl(f ) is the minimum t for which V (Jnt (f )) 6= ∅



Simonetti’s Ideal

Complexity Considerations

I A direct application of this method becomes impractical even
for small values of n, since

(2n
t

)
monomials should be

evaluated.

I Computational experiments by E. Bellini suggest that only a
few monomials need to be evaluated. Unfortunately there is
no obvious way to select those monomials.

Open problem

I Given f , select the monomials in Simonetti’s ideal that need
to be evaluated.

I Find classes of Boolean functions such that the complexity of
the method is low.



Meneghetti’s method

For each i = 1, . . . ,N = 2n, let

βi (A) = α(A, vi ) + f (vi ) ∈ F2[A].

Theorem (Meneghetti)

nl(f ) ≥ t ⇐⇒ ϕN,t (β1(A), . . . , βN(A)) = ϕn+1,1(A).



Meneghetti’s method

Complexity Considerations

As the previous method, the computation of nl(f ) is impractical,
since

(2n
t

)
multiplications involving affine functions are required.

Open problems

I Exploit symmetries of ϕN,t to lower the complexity.

I Exploit symmetries of the set {fi (A)}i to lower the complexity.

I Find classes of Boolean functions such that the complexity of
the method is low.



Bellini’s approach

Recall: βi (A) = α(A, vi ) + f (vi ) ∈ F2[A].

Define:

I βZi (A) is the NNF of βi (A).

I nf (A) = βZ1 + . . .+ βZ2n ← nonlinearity polynomial

I EQ[A] = {a20 − a0, a
2
1 − a1, . . . , a

2
n − an} ⊂ Q[A]



Bellini’s approach

Let us consider the projection

(F2)n+1 → (F2)n, v = (v0, v1, . . . , vn) 7→ ṽ = (v1, . . . , vn)

Theorem (Bellini, - )

Let {cv}v∈(F2)n+1 be such that nf (A) =
∑

v∈{0,1}n+1 cvA
v . Then

c0 =
∑

u∈(F2)n
f (u)

cv = (−2)wH(v)
∑

ṽ�u
[
f (u)− 1

2

]
Complexity Considerations

Using a fast butterfly scheme, the computation of the nonlinearity
polynomial requires O(n2n) integer sums ad doublings.



Bellini’s approach

Let N t
f = 〈EQ[A] ∪ {nf − t}〉.

Theorem (Bellini, - )

V (N t
f ) 6= ∅ if and only if nl(f ) = t.

Complexity Considerations

The computation of nl(f ) relies on a multivariate polynomial
system. If we treat it as a generic ideal, we need to compute a
Groebner basis.



Bellini’s approach

Remark
The evaluation vector of the nonlinearity polynomial nf (A)
represents the distances of f from all possible affine Boolean
functions.

Theorem (Bellini, - )

nl(f ) = min
v∈{0,1}n+1

{nf (v)}



Groebner description, natural and linear representations

Let:

I K be any field

I J ⊂ K[X ] be a zero-dimensional ideal with deg(J) = s

I A = K[X ]/J the corresponding quotient algebra, with
dimK(A) = s

With a slight abuse of notation, we denote with f ∈ A the residue
class modulo J of f ∈ K[X ]. Let:

I φf (g) be the endomorphism A→ A mapping g to fg ∈ A

I b = {b1, . . . , bs} a K−basis of A



Groebner description, natural and linear representations

Any element g ∈ A admits a unique representation of the form

g =
∑
j

γ
(b)
j (g)bj .

The vector
Rep(g , b) =

(
γ
(b)
1 (g), . . . , γ

(b)
s (g)

)
is known as the Groebner description of g .

Remark
The endomorphism φf is represented by the square matrix

Mf ,b =
[
γ
(b)
j (fbi )

]
.



Groebner description, natural and linear representations

A natural representation of the ideal J consists of

I a K− basis b ⊂ A

I the square matrices Mx1,b, . . . ,Mxn,b.

Remark
An (optional) third object of a natural representation is the
assignment of

I s3 values γijl ∈ K such that

bi · bj =
∑
l

γijlbl .



Groebner description, natural and linear representations

A set of monomials N ⊂M is an escalier if it is an order ideal, i.e.
if for each pair λ, τ ∈M for which λτ ∈ N, then τ ∈ N.

A natural representation is called a linear representation if the basis
b of the reprensentation is an escalier.



A Groebner representation based algorithm

Input:

I The natural representation b,M of a zero-dimensional ideal
I ⊂ Fq[X ]

I The Groebner descriptions of a finite set of elements
F = {f1, . . . , fm} ⊂ Fq[X ];

Output:

I The linear representation of the ideal J = I ∪ 〈F 〉.



A Groebner representation based algorithm

Idea:

I Start with J = I ;

I Add to J an element of F at a time, by updating its natural
representation.

At each step, some elements of the basis b may be removed.

At the end, what remains is a natural representation b′ of J.

Complexity Considerations

This algorithm, known as Traverso’s algorithm, needs to perform
at most s loops each costing O(ns2).



A Groebner representation based algorithm

Theorem
Computing the Nonlinearity through Simonetti’s system using
Traverso’s algorithm requires O(n22n) elementary operations.


	Boolean functions
	Polynomial based methods

