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The objects of the investigation: (Generalized)
Boolean functions I

Boolean function f : Fn
2 → F2

Generalized Boolean function f : Fn
2 → Zq (q ≥ 2);

its set GBq
n; when q = 2, Bn;

(Generalized) Walsh-Hadamard transform:
H(q)

f (u) =
∑
x∈Fn

2

ζ
f (x)
q (−1)u·x, ζq = e

2πi
q ; (useWf , if q = 2)

Fourier transform: Ff (u) =
∑
x∈Fn

2

f (x)(−1)u·x

Let 2k−1 < q ≤ 2k . Then GBq
n 3 f ←→ {ai}0≤i≤k−1 ⊂ Bn:

f (x) = a0(x) + 2a1(x) + · · ·+ 2k−1ak−1(x), ∀x ∈ Fn
2.
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Characterizing generalized bent f : Fn
2 → Z2k

f : GBq
n is generalized bent (gbent) if |Hf (u)| = 2n/2, ∀u.

Theorem (Various Authors 2015–’17)

Let f (x) = a0(x) + 2a1(x) + · · ·+ 2k−2ak−2(x) + 2k−1ak−1(x) be
a function in GB2k

n , k > 1, ai ∈ Bn, 0 ≤ i ≤ k − 1, and
f̃ ∈ ak−1 ⊕ 〈a0,a1, . . .ak−2〉. Then f is gbent iff f̃ is bent (n
even), respectively, semibent (n odd), with an (explicit) extra
condition on the Walsh-Hadamard coeff.
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Differential properties of generalized Boolean
functions I

u ∈ Fn
2 is a linear structure of f ∈ GBq

n if the derivative
Duf (x) := f (x⊕ u)− f (x) = c ∈ Zq constant, for all x ∈ Fn

2.
Let Sf = {x ∈ Fn

2 |Hf (x) 6= 0} 6= ∅ (gen.WH support)

Theorem (Martinsen–Meidl–Pott–S., 2018)

Let f ∈ GB2k

n , with f (x) =
∑k−1

i=0 2iai(x), ai ∈ Bn. The following
are equivalent:

(i) a is a linear structure for f .

(ii) a is a linear structure for ai , s.t. ai (a) = ai (0),0 ≤ i < k − 1.

(iii) a satisfies ζ f (a)−f (0) = (−1)a·w, for all w ∈ Sf .
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Differential properties of generalized Boolean
functions II

We say that f ∈ GB2k

n satisfies the (generalized)
propagation criterion of order ` (1 ≤ ` ≤ n), gPC(`), iff the
autocorrelation Cf (v) =

∑
x∈Vn

ζ f (x)−f (x⊕v) = 0, for all
vectors v ∈ Fn

2 of weight 0 < wt(v) ≤ `.
f is gbent⇐⇒ gPC(n).

Theorem (Martinsen–Meidl–Pott–S., 2018)

Let f ∈ GB2k

n , and A(w)
j = (Dwf )−1(j) = {x|f (x⊕w)− f (x) = j}.

Then f is gPC(`) if and only if, for 1 ≤ wt(w) ≤ `,

|A(0)
0 | = 2n, |A(0)

j | = 0, |A(w)
j | = |A(w)

j+2k−1 |, ∀ 0 ≤ j ≤ 2k−1 − 1.
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Can one "visualize” some cryptographic properties of
a Boolean function?

Cayley graph of f : Fn
2 → F2, Gf = (Fn

2,Ef ),

Ef = {(w,u) ∈ Fn
2 × Fn

2 : f (w⊕ u) = 1}.

Adjacency matrix Af = {ai,j}, ai,j := f (i⊕ j) (where i is the
binary representation as an n-bit vector of the index i);
Spectrum of Gf is the set of eigenvalues of Af (Gf ).
Cayley graph Gf has eigenvalues λi =Wf (i), ∀i .
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Cayley graph example: f (x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x3
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Strongly regular graphs

A graph is regular of degree r (or r -regular) if every vertex
has degree r ;
The Cayley graph of a Boolean function is always a regular
graph of degree wt(f ).
We say that an r -regular graph G with v vertices is a
strongly regular graph (SRG) with parameters (v , r ,e,d) if
∃ integers e,d ≥ 0 s.t. for all vertices u,v:

the number of vertices adjacent to both u,v is e if u,v are
adjacent,
the number of vertices adjacent to both u,v is d if u,v are
nonadjacent.

We assume throughout that Gf is connected (in fact, one
can show that all connected components of Gf are
isomorphic).
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Bernasconi-Codenotti correspondence

Shrikhande & Bhagwandas ’65: A connected r -regular
graph is strongly regular iff ∃ exactly three distinct
eigenvalues λ0 = r , λ1, λ2
(also, e = r + λ1λ2 + λ1 + λ2, d = r + λ1λ2).
The parameters satisfy r(r − e − 1) = d(v − r − 1).
The adjacency matrix A satisfies (J is the all 1 matrix)

A2 = (d − e)A + (r − e)I + eJ.

Bernasconi-Codenotti correspondence: Bent functions
exactly correspond to strongly regular graphs with e = d .
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P.J. Cameron: “Strongly regular graphs lie on the cusp
between highly structured and unstructured. For example,
there is a unique srg with parameters (36,10,4,2), but there
are 32548 non-isomorphic srg with parameters (36,15,6,6). In
light of this, it will be difficult to develop a theory of random
strongly regular graphs!”
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Plateaued functions and their Cayley graphs

f ∈ GB2k

n is called s-plateaued if |Hf (u)| ∈ {0,2(n+s)/2} for
all u ∈ Fn

2.
For k = 1: s = 0 (n even), f is bent; if s = 1 (n odd), or
s = 2 (n even), we call f semibent.
Advantages: they can be balanced and highly nonlinear
with no linear structures.
In general, the spectrum of the Cayley graph of an
s-plateaued f : Fn

2 → F2 will be 4-valued (so, not srg!): if
the WH transform of f takes values in {0,±2

n+s
2 }, then the

Fourier transform of f takes values in {wt(f ),0,±2
n+s

2 −1};
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Cayley graphs of plateaued Boolean functions:
example

Cayley graph of the semibent
f (x) = x1x2⊕x3x4⊕x1x4x5⊕x2x3x5⊕x3x4x5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Pante Stanica Differential and graph theoretical properties



Cayley graphs of plateaued Boolean functions with
wt(f ) = 2(n+s−2)/2

There is one case when we do obtain an srg:

Theorem (Riera–Solé–S. 2018)

If f : Fn
2 → F2 is s-plateaued and wt(f ) = 2(n+s−2)/2, then Gf (if

connected) is the complete bipartite graph between supp(f) and
supp(f) (if disconnected, it is a union of complete bipartite
graphs). Moreover, Gf is strongly regular with
(e,d) =

(
0,2(n+s−2)/2).
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Strongly walk-regular graphs

van Dam and Omidi: G is strongly `-walk-regular of
parameters (σ`, µ`, ν`) if there are σ`, µ`, ν` walks of length
` between every two adjacent, every two non-adjacent, and
every two identical vertices, respectively.
Every strongly regular graph of parameters (v , r ,e,d) is a
strongly 2-walk-regular graph with parameters (e,d , r).
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Cayley graphs of plateaued Boolean functions with
wt(f ) 6= 2(n+s−2)/2

Theorem (Riera–Solé–S. 2018)

Let f : Fn
2 → F2 be a Boolean function, and assume that Gf is

connected and r := wt(f ) 6= 2(n+s−2)/2. Then, f is s-plateaued
(with 4-valued spectra) if and only if Gf is strongly
3-walk-regular of parameters
(σ, µ = ν) = (2−nr3 + 2n+s−2 − 2s−2r ,2−nr3 − 2s−2r).

1 In fact, we showed that it is `-walk regular for all odd `, and
found the parameters explicitly.

Go2OpenQues
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Generalized Boolean and their Cayley graphs I

For f ∈ GBq
n, (gen.) Cayley graph Gf : Vn vertices; (u,v)

edge of (multiplicative) weight ζ f (u⊕v) (additively f (u⊕ v)).
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Figure: Cayley graph of gbent f (x) = x1 + 2(x1x2 ⊕ x3x4)

Pante Stanica Differential and graph theoretical properties



Strong regularity for weighted graphs

Let X ,Y ⊆ Z2k . A weighted regular G = (V ,E ,w), V ⊆ Vn,
w : E → Z2k is a (gen.) (X ; Y )-strongly regular of
parameters (eX ,Y ,dX ,Y ) iff # vertices c adjacent to both
a,b, with w(a,c),w(b,c) ∈ Y , is exactly eX ,Y , if
w(a,b) ∈ X , resp., dX ,Y , if w(a,b) ∈ X̄ .
One can weaken the condition and define a (X1,X2; Y )-srg
notion, where X1 ∩ X2 = ∅, not necessarily a bisection; or
even allowing a multi-section, and all of these variations
can be fresh areas of research for graph theory experts.
Note that this is a natural extension of the classical
definition: for q = 2, and X = {1}, the classical strongly
regular graph is then equivalent to an (X ; X )-strongly
regular graph.
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Bernasconi-Codenotti strong regularity for gbents

Theorem (Riera–S.–Gangopadhyay 2018)

Let f ∈ GB4
n, n even. Then f is gbent iff Gf is (X ; X̄ )-strongly

regular with eX = dX , for both X = {0,1}, and X = {0,3}.

Theorem (Riera–S.–Gangopadhyay 2018)

If f = a0 + 2a1 + · · ·+ 2k−1ak−1, k ≥ 2, ai ∈ Bn, is gbent (n
even) then the associated weighted Cayley graph is
(X 0

c ; X 1
c )-strongly regular with explicit X 0

c ,X 1
c .
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Food for thought

How do the Cayley graphs for generalized
semibent/plateaued look like?
Can one investigate other cryptographic properties of
Boolean functions in terms of their Cayley graphs?
Investigate the “APN property” for functions : Fn

2 → Z2n ;
Construct functions with small differential spectra;
Look at other functions, like rotation symmetric in the
generalized context and their differential properties;
Define the nonlinearity in that environment;
Define some of these properties (depending upon the
Walsh-Hadamard transform with respect to other
characters, and/or combine multiple characters.
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Theorem (Pante Stanica: http://faculty/nps.edu/pstanica)

Thank you for your attention!
Proof.
None required, but questions are welcome!

Pante Stanica Differential and graph theoretical properties


