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The Feedback Shift Registers - FSRs

> Let F be the binary field and Fj the n-dimensional vector
space over [F,. Let us consider a mapping

§:F; —Fp
S(x0y -y xn—1) = (x1, %2, - . .y Xp—1, F (X0, - - - s Xn—1)) (1)
where f is a Boolean function of n variables of the form
f-(X()7 .. ;Xn—l) = Xp + F(Xl, .. 7X,,_l)7 (2)

and F is a Boolean function of n — 1 variables.
» The formula (1) defines a nonsingular FSR of order n.

> A nonsingular register decomposes the space 5 into a finite
number of disjoint cycles.



Generating Binary Sequences

» If there is only one cycle (of length 2"), then we have a de
Bruijn sequence.

» The number of cyclically non-equivalent de Bruijn sequences
of order n is (published 1946)

B,=2%""""
=

» In fact, these sequences were discovered by Fench
mathematician C. Flye Sainte-Marie in 1984 and he proved
the above formula.

» Consider the binary sequence s = (s, s1, .. .) with given
n-initial elements (sp, ..., S,—1). The next elements, for i > 0,
are calculated from the formula

Sitn = f(s,-, Sit1y--- ,S;+n_1) =S + F(S;+1, ey S,'_|_,,_1).



Nicolaas Govert de Bruijn, Dutch mathematician
9 July 1918 - 17 February 2012

Oberwolfach, 1960



Nonlinear Feedback Shift Registers

» The Algebraic Normal Form (ANF) of a Boolean function f of
n variables is given by

f(Xo,Xl, .. ,anl) = Z iy, i Xiy e Xy with ai,...ir € s,
where the sum is over all t-subsets
{iy...,it} €{0,1,...,n—1}.
> In particular we have the linear recurrence
f(Xo,Xl, R 7Xn_l) =Xg+ C1xX1+ ...+ Ch—1Xp—1.

and the corresponding Linear Feedback Shift Register (LFSR).

» When the Boolean function F is a non-linear one, we have a
Nonlinear Feedback Shift Register (NLFSR).



Solomon Golomb (30 May 1932 - 1 May 2016)
and Guang Gong, SETA 2012
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Cross-Join Pairs of States

> Let (s¢) = (s0,51, - ,Sn—2,5n_1) be a de Bruijn sequence.
> Let S; = (si,Sit1," ", Sit(n—1)) denote a state. Consider the
de Bruijn sequence as a sequence of its states

(Sf) = (507 517 T 752"—27 S2"—1)

Definition

Two pairs of states (a,3) and (b, b) constitute cross-join pairs of
states if a = (ap, A), a=(ag,A) and b= (bg, B), b= (bo,B),
where U = u + 1 is the negation of the bit v and the states appear
in the order a, b, 3, b in the sequence of states of a given de
Bruijn sequence.

We write A = (31, ce ,a,,_l) and B = (bl7 ce 7bn—1)-



Cross-Join Pairs of States - an Example for n = 4
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de Bruijn Sequences and the Cross-Join Pair Operation

Let {s,} be a de Bruijn sequence of order n (or modified de Bruijn
sequence with period 2" — 1) generated by the feedback Boolean
function f of the form (2). Let (a,3) and (b, b) are cross-join pairs
of states for that sequence. Then the feedback Boolean function

n—1 n—1

f(x0-X1, .-y Xn—1) + H(X,‘ +a+1)+ H(Xi +bi+1) (3)
i=1 i=1

generates new de Bruijn sequence. We call (3) the cross-join pair
operation.

Theorem 1. (J. Mykkeltveit and J. Szmidt, 2015)

Let (ut), (v¢) be two de Bruijn sequences of order n. Then (v;)
can be obtained from (u;) by repeated applications of the
cross-join operation.



The List of NLFSRs for n = 4

X0+ X1

I Xo + X3

v
W N =

D Xo T X1+ X1X2X3 + X1X2X3 = Xp + X1 + X2 + X1X2
> 4 xp + x3 + X1X2X3 + X1X2X3 = X + X2 + X3 + X1X2
> 5 xp + x1 + (X1xox3 + X1x0X3) + (X1X0X3 + X1X2X3) =
X0 + X1 + X2 + X1X3
> 6: X0 + x3 + (X1xox3 + X1x2X3) + (X1X2X3 + x1X2X3) =
X0 + X2 + X3 + X1X3
> 7: Xp + X3+ X1x0X3 + X1XoXx3 = Xg + X0 + X1X0 + X1X3
> 8: xg + X1 + X1 XoX3 + X1XoX3 = Xg + X1 + X2 + X3 + X1 X0 + X1X3

» notation: X; = x; + 1



The list of NLFSRs for n = 4

v

9: xo + x1 + X1X2X3 + X1 X2X3 = X + X1 + X2 + X2X3

10: xo + X3 + x1X0X3 + X1X2X3 = Xg + X2 + X3 + X2X3

11; xo + X1 + X1x2X3 + X1X2X2 = X0 + X1 + X1X2 + X2X3

12: xg + x1 + x1X0X3 + X1X0x3 = Xg + X3 + X1X20 + X0X3

13: xg + x1 + x1X0X3 + X1X0X3 = Xg + X0 + X1X3 + X0X3

14: xg + x3 + x1X0X3 + X1X0X3 = Xp + X1 + X2 + X3 + X1X3 + X0X3
15:

Xp + X1 + X1X2X3 + X1X2X3 = Xg + X1 + X2 + X1 X2 + X1X3 + X2X3
16:

X0 + X3 + X1X2X3 + X1X2X3 = Xp + X2 + X3 + X1 X2 + X1 X3 + X2X3



Finite Fields, Primitive Polynomials and m-Sequences

» Let p(x) =x"+cp1x" 1+ -+ cix+1 be a primitive
polynomial of degree n with binary coefficients.

» Then the linear recurrence
g(x0, X1,y Xn—1) = X0 + C1X1 + *+ + Cp—1Xn—1

generates the m-sequence which is a binary sequence of the
period 2" — 1.

» Let a be a root of the polynomial p(x), i.e. p(a) =0 in the
Galois field GF(2") constructed by the polynomial p(x).

» The sequence of elements {1,a,a%,...,a> 2} in GF(2") has
period 2" — 1 and directly leads to a binary m-sequence.



Evariste Galois (25 October 1811 - 31 May 1832)




Zech Logarithms in GF(2")

> Letje{1,...,2" -2}
» Then the integer Z(j) such that

1+ 4 =a%0)

is the Zech logarithm of ;.

» Then we have a one-to-one function
Z:{1,...,2" -2} —{1,...,2" -2}

» The Zech logarithms are tabularized. There are effective
algorithms to calculate them.

> The Magma computer algebra system can calculate the Zech
logarithms for n < 430, i.e., in GF(2%39).



The Feedback Functions of the Constructed NFSRs

» Take the primitive polynomial x> + x? + 1.
» The values of the feedback function at the points of 'the
jumps’, say Z(2) =5 and Z(4) = 10 are

A=(0,0,0,0,1) and B =(0,0,1,0,0).
» The feedback function of the NLFSR is f =
xot+x2+(x1+1)(x2+1)(x3+1)xa+(x1+1)xo(x3+1)(xa+1)
= Xo + Xa + X1X0X3 + X1 X2 + X1 X3Xq + X1 X4 + XoX3 + X3X4.

» The quadratic feedback function for the register of order 5
obtained by applying the cross-join operation twice is

X0 + X4 + X2X3 + X3X4.

» The quadratic feedback function for the register of order 6
obtained similarly is

Xo + x1 + X2 + X5 + x1x2 + X1.X5.



The Cross-Join Pair for LFSR of Order n = 31

> Let a be a root of the primitive polynomial
p(x) =x3 +x3+ 1.

» We use the mapping Z(2n) = 2Z(n) for the Zech logarithm.
The cross-join pairs ¢ := (3,6, 31,62) abbreviates the pair of
states (a3,a% 1 + a3 = a3, 1 + 2% = 4%2) since Z(3) = 31.

> The states of LFSR at 'the jumps’:
A=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,0,0), Axg =1,

B =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,1,0,0,0,0,0), Bos = 1.

» The corresponding feedback function of the constructed

NLFSR
30 30
f=xo+x3+ [[(xi+ A+ 1)+ [[(xi + Bi +1).
i=1 i=1

It is a Boolean function of degree 29.



The Cross-Join Pairs for Order n = 127

» Use the primitive polynomial p(x) = x*27 + x + 1.
» Since Z(1) = 127, making Z(2) = 254, we have the sequence
of mutually disjoint cross-join pairs:

¢ = (287 2118 107287 127 .21¥8/) for j = 0,1,...,15.

» From this family we can construct 21 — 1 NFSRs of order
n = 127 which generate sequences of the period 227 — 1.

> An Example: the cross-join pairs
c3 = (224,225,127 - 224 127 - 2127),

» The corresponding Boolean feedback function has algebraic
degree 125.



The Quadratic NLFSRs of Order n € {27,28,29}

» For n=27
X0 1 X1+ X2 + X4 +Xg 4 X10 + X11 + X14 + X17 + X19 + X21 + X6 X10-
» For n =28
X0+X4+X5+X6+XgTX11+X14+X18+X19+X21 +X22 X206 +X27+Xg X27.
» For n=29
X0 + X3+ X5 + X6 + X11 + X12 + X16 + X19 + X22 + X23 + X27 + X20X28
and

X0 + Xg + X6 + X7 + X9 + x10 + X11 + X12+
X16 + X17 + X021 + X5 + X206 + X17X21
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