On Cross-Join Method for de Bruijn Sequences and Zech Logarithms

Martianus Frederic Ezerman, Adamas Aqsa Fahreza NTU, Singapore <u>Janusz Szmidt</u>, MCI, Poland

The 3rd International Workshop on Boolean Functions and their Applications BFA 2018

20 June 2018

The Feedback Shift Registers - FSRs

▶ Let \mathbb{F}_2 be the binary field and \mathbb{F}_2^n the *n*-dimensional vector space over \mathbb{F}_2 . Let us consider a mapping

$$\mathfrak{F}: \mathbb{F}_2^n \to \mathbb{F}_2^n$$

$$\mathfrak{F}(x_0,\ldots,x_{n-1})=(x_1,x_2,\ldots,x_{n-1},f(x_0,\ldots,x_{n-1})) \ (1)$$

where f is a Boolean function of n variables of the form

$$f(x_0,\ldots,x_{n-1})=x_0+F(x_1,\ldots,x_{n-1}),$$
 (2)

and F is a Boolean function of n-1 variables.

- ▶ The formula (1) defines a nonsingular *FSR* of order n.
- ▶ A nonsingular register decomposes the space \mathbb{F}_2^n into a finite number of disjoint cycles.

Generating Binary Sequences

- ▶ If there is only one cycle (of length 2ⁿ), then we have a de Bruijn sequence.
- ► The number of cyclically non-equivalent de Bruijn sequences of order *n* is (published 1946)

$$B_n=2^{2^{n-1}-n}$$

- In fact, these sequences were discovered by Fench mathematician C. Flye Sainte-Marie in 1984 and he proved the above formula.
- ▶ Consider the binary sequence $\mathbf{s} = (s_0, s_1, ...)$ with given n-initial elements $(s_0, ..., s_{n-1})$. The next elements, for $i \ge 0$, are calculated from the formula

$$s_{i+n} = f(s_i, s_{i+1}, \dots, s_{i+n-1}) = s_i + F(s_{i+1}, \dots, s_{i+n-1}).$$

Nicolaas Govert de Bruijn, Dutch mathematician 9 July 1918 - 17 February 2012

Oberwolfach, 1960

Nonlinear Feedback Shift Registers

► The Algebraic Normal Form (ANF) of a Boolean function f of n variables is given by

$$f(x_0,x_1,\ldots,x_{n-1})=\sum a_{i_1,\ldots,i_t}x_{i_1}\cdots x_{i_t} \text{ with } a_{i_1,\ldots,i_t}\in \mathbb{F}_2,$$

where the sum is over all t-subsets

$$\{i_1,\ldots,i_t\}\subset\{0,1,\ldots,n-1\}.$$

In particular we have the linear recurrence

$$f(x_0, x_1, \ldots, x_{n-1}) = x_0 + c_1 x_1 + \ldots + c_{n-1} x_{n-1}.$$

and the corresponding Linear Feedback Shift Register (LFSR).

▶ When the Boolean function *F* is a non-linear one, we have a Nonlinear Feedback Shift Register (*NLFSR*).

Solomon Golomb (30 May 1932 - 1 May 2016) and Guang Gong, SETA 2012

Cross-Join Pairs of States

- ▶ Let $(s_t) = (s_0, s_1, \dots, s_{2^n-2}, s_{2^n-1})$ be a de Bruijn sequence.
- Let $S_i = (s_i, s_{i+1}, \dots, s_{i+(n-1)})$ denote a state. Consider the de Bruijn sequence as a sequence of its states

$$(S_t) = (S_0, S_1, \cdots, S_{2^n-2}, S_{2^n-1})$$

Definition

Two pairs of states (a, \widehat{a}) and (b, \widehat{b}) constitute cross-join pairs of states if $a = (a_0, A)$, $\widehat{a} = (\overline{a_0}, A)$ and $b = (b_0, B)$, $\widehat{b} = (\overline{b_0}, B)$, where $\overline{u} = u + 1$ is the negation of the bit u and the states appear in the order a, b, \widehat{a} , \widehat{b} in the sequence of states of a given de Bruijn sequence.

We write $A = (a_1, \dots, a_{n-1})$ and $B = (b_1, \dots, b_{n-1})$.

Cross-Join Pairs of States - an Example for n = 4

$$\frac{\alpha - 1011}{\overline{x_1}x_2x_3} = x_1x_2\overline{x_3}$$

$$x_0 + x_3 + \overline{x_1}x_2x_3 + x_1x_2\overline{x_3} = x_0 + x_3 + x_1x_2 + x_2x_3$$

de Bruijn Sequences and the Cross-Join Pair Operation

Let $\{s_n\}$ be a de Bruijn sequence of order n (or modified de Bruijn sequence with period 2^n-1) generated by the feedback Boolean function f of the form (2). Let (a, \widehat{a}) and (b, \widehat{b}) are cross-join pairs of states for that sequence. Then the feedback Boolean function

$$f(x_0.x_1,\ldots,x_{n-1})+\prod_{i=1}^{n-1}(x_i+a_i+1)+\prod_{i=1}^{n-1}(x_i+b_i+1)$$
 (3)

generates new de Bruijn sequence. We call (3) the cross-join pair operation.

Theorem 1. (*J. Mykkeltveit and J. Szmidt*, 2015) Let (u_t) , (v_t) be two de Bruijn sequences of order n. Then (v_t) can be obtained from (u_t) by repeated applications of the cross-join operation.

The List of NLFSRs for n = 4

- ▶ 1: $x_0 + x_1$
- \triangleright 2: $x_0 + x_3$
- ► 3: $x_0 + x_1 + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3} = x_0 + x_1 + x_2 + x_1x_2$
- 4: $x_0 + x_3 + \overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_3 + x_1x_2$
- ▶ 5: $x_0 + x_1 + (\overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3}) + (x_1x_2\overline{x_3} + x_1\overline{x_2}x_3) = x_0 + x_1 + x_2 + x_1x_3$
- 6: $x_0 + x_3 + (\overline{x_1}x_2x_3 + \overline{x_1}x_2\overline{x_3}) + (x_1x_2\overline{x_3} + x_1\overline{x_2}x_3) = x_0 + x_2 + x_3 + x_1x_3$
- ▶ 7: $x_0 + x_3 + \overline{x_1}x_2\overline{x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_1x_2 + x_1x_3$
- $8: x_0 + x_1 + \overline{x_1}x_2\overline{x_3} + \overline{x_1}\overline{x_2}x_3 = x_0 + x_1 + x_2 + x_3 + x_1x_2 + x_1x_3$
- ▶ notation: $\overline{x_i} = x_i + 1$

The list of NLFSRs for n = 4

- 9: $x_0 + x_1 + x_1x_2\overline{x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_1 + x_2 + x_2x_3$
- ▶ 10: $x_0 + x_3 + x_1x_2\overline{x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_3 + x_2x_3$
- ▶ 11; $x_0 + x_1 + \overline{x_1}x_2x_3 + x_1x_2\overline{x_2} = x_0 + x_1 + x_1x_2 + x_2x_3$
- ▶ 12: $x_0 + x_1 + x_1\overline{x_2x_3} + \overline{x_1x_2}x_3 = x_0 + x_3 + x_1x_2 + x_2x_3$
- ▶ 13: $x_0 + x_1 + x_1\overline{x_2x_3} + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_1x_3 + x_2x_3$
- ▶ 14: $x_0 + x_3 + x_1 \overline{x_2 x_3} + x_1 \overline{x_2} x_3 = x_0 + x_1 + x_2 + x_3 + x_1 x_3 + x_2 x_3$
- ▶ 15: $x_0 + x_1 + x_1 \overline{x_2} x_3 + \overline{x_1} x_2 \overline{x_3} = x_0 + x_1 + x_2 + x_1 x_2 + x_1 x_3 + x_2 x_3$
- ▶ 16: $x_0 + x_3 + x_1\overline{x_2}x_3 + \overline{x_1}x_2\overline{x_3} = x_0 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3$

Finite Fields, Primitive Polynomials and *m*-Sequences

- Let $p(x) = x^n + c_{n-1}x^{n-1} + \cdots + c_1x + 1$ be a primitive polynomial of degree n with binary coefficients.
- Then the linear recurrence

$$g(x_0, x_1, \ldots, x_{n-1}) = x_0 + c_1x_1 + \cdots + c_{n-1}x_{n-1}$$

generates the *m*-sequence which is a binary sequence of the period $2^n - 1$.

- Let a be a root of the polynomial p(x), i.e. p(a) = 0 in the Galois field $GF(2^n)$ constructed by the polynomial p(x).
- ▶ The sequence of elements $\{1, a, a^2, \dots, a^{2^n-2}\}$ in $GF(2^n)$ has period $2^n 1$ and directly leads to a binary m-sequence.

Evariste Galois (25 October 1811 - 31 May 1832)

Zech Logarithms in $GF(2^n)$

- ▶ Let $j \in \{1, ..., 2^n 2\}$
- ▶ Then the integer Z(j) such that

$$1 + a^j = a^{Z(j)}$$

is the Zech logarithm of j.

▶ Then we have a one-to-one function

$$Z: \{1, \ldots, 2^n - 2\} \longrightarrow \{1, \ldots, 2^n - 2\}$$

- ► The Zech logarithms are tabularized. There are effective algorithms to calculate them.
- ▶ The Magma computer algebra system can calculate the Zech logarithms for $n \leq 430$, *i.e.*, in $GF(2^{430})$.

The Feedback Functions of the Constructed NFSRs

- ▶ Take the primitive polynomial $x^5 + x^2 + 1$.
- ▶ The values of the feedback function at the points of 'the jumps', say Z(2) = 5 and Z(4) = 10 are

$$A = (0, 0, 0, 0, 1)$$
 and $B = (0, 0, 1, 0, 0)$.

▶ The feedback function of the NLFSR is *f* =

$$x_0 + x_2 + (x_1 + 1)(x_2 + 1)(x_3 + 1)x_4 + (x_1 + 1)x_2(x_3 + 1)(x_4 + 1)$$

= $x_0 + x_4 + x_1x_2x_3 + x_1x_2 + x_1x_3x_4 + x_1x_4 + x_2x_3 + x_3x_4$.

► The quadratic feedback function for the register of order 5 obtained by applying the cross-join operation twice is

$$x_0 + x_4 + x_2x_3 + x_3x_4$$
.

► The quadratic feedback function for the register of order 6 obtained similarly is

$$x_0 + x_1 + x_2 + x_5 + x_1x_2 + x_1x_5$$
.

The Cross-Join Pair for LFSR of Order n = 31

- Let a be a root of the primitive polynomial $p(x) = x^{31} + x^3 + 1$.
- We use the mapping Z(2n) = 2Z(n) for the Zech logarithm. The cross-join pairs c := (3, 6, 31, 62) abbreviates the pair of states $(a^3, a^6, 1 + a^3 = a^{31}, 1 + a^6 = a^{62})$ since Z(3) = 31.
- The corresponding feedback function of the constructed NLFSR

$$f = x_0 + x_3 + \prod_{i=1}^{30} (x_i + A_i + 1) + \prod_{i=1}^{30} (x_i + B_i + 1).$$

It is a Boolean function of degree 29.

The Cross-Join Pairs for Order n = 127

- ▶ Use the primitive polynomial $p(x) = x^{127} + x + 1$.
- ▶ Since Z(1) = 127, making Z(2) = 254, we have the sequence of mutually disjoint cross-join pairs:

$$c_i = (2^{8i}, 2^{1+8i}, 127 \cdot 2^{8i}, 127 \cdot 2^{1+8i})$$
 for $i = 0, 1, \dots, 15$.

- From this family we can construct $2^{16} 1$ NFSRs of order n = 127 which generate sequences of the period $2^{127} 1$.
- ► An Example: the cross-join pairs $c_3 = (2^{24}, 2^{25}, 127 \cdot 2^{24}, 127 \cdot 2^{127}).$
- The corresponding Boolean feedback function has algebraic degree 125.

The Quadratic NLFSRs of Order $n \in \{27, 28, 29\}$

▶ For n = 27

$$x_0 + x_1 + x_2 + x_4 + x_8 + x_{10} + x_{11} + x_{14} + x_{17} + x_{19} + x_{21} + x_6 x_{10}.$$

▶ For n = 28

$$x_0 + x_4 + x_5 + x_6 + x_8 + x_{11} + x_{14} + x_{18} + x_{19} + x_{21} + x_{22} + x_{26} + x_{27} + x_8 x_{27}.$$

▶ For n = 29

$$x_0 + x_3 + x_5 + x_6 + x_{11} + x_{12} + x_{16} + x_{19} + x_{22} + x_{23} + x_{27} + x_{20}x_{28}$$

and

$$x_0 + x_4 + x_6 + x_7 + x_9 + x_{10} + x_{11} + x_{12} + x_{16} + x_{17} + x_{21} + x_{25} + x_{26} + x_{17}x_{21}$$

Publications

- C.Y. Li, X.Y. Zeng, T. Helleseth, C.L. Li and L. Hu. The properties of a class of linear FSRs and their applications to the construction of nonlinear FSRs. IEEE Trans. Inf. Theory, vol. 60, no. 5, 2014, pp. 3052-3061.
- C.Y. Li, X.Y. Zeng, C.L. Li and T. Helleseth. A class of de Bruijn sequences. IEEE Trans. Inf. Theory, vol. 60, no. 12, 2014, pp. 7955-7969.
- C.Y. Li, X.Y. Zeng, C.L. Li, T. Helleseth and M. Li. Construction of de Bruijn sequences from LFSRs with reducible characteristic polynomial. IEEE Trans. Inf. Theory, vol. 62, no. 1, 2016, pp. 610-624.
- ▶ M. Li, Y. Jiang, D. Lin. The adjacency graphs of some feedback shift registers. Design, Codes and Cryptography, accepted to publish, February 2016.
- ▶ J. Dong, D. Pei. Construction for de Bruijn sequences with large stage, under review.

Publications

- T. Rachwalik, J. Szmidt, R. Wicik, J. Zabłocki. Generation of nonlinear feedback shift register with special-purpose hardware. Military Comunications and Information Systems Conference MCC 2012, pp.151-154.
- ▶ P. Dąbrowski, G. Łabuzek, T. Rachwalik, J. Szmidt. Searching for nonlinear feedback Shift register with parallel computing. Information Processing Letters, 114,(2014), pp. 268-272.
- ▶ J. Mykkeltveit, J. Szmidt. Nieliniowe rejestry przesuwne I łączenie skrzyżowanych par stanów. Studia Bezpieczeństwa Naro-dowego. Kryptologia i Cyberbezpieczeństwo. Wojskowa Akademia Techniczna. Warszawa 2014. str. 271 – 283.
- ▶ J. Mykkeltveit, J. Szmidt. On cross joining de Bruijn sequences. Contemporary Mathematics, 2015, vol.63, s.335-346.
- ▶ J. Szmidt, P. Dąbrowski. The construction of nonlinear feedback shift registers of small orders . In International Conference on Military Communications and Information Systems (ICMCIS), 18-19 May 2015 Cracow.

