Characterizations of differentially uniform functions by the Walsh transform and related cyclic difference set-like combinatorial structures

Claude Carlet, LAGA, University of Paris 8

Let n, m and δ be positive integers, with δ even. A function $F : \mathbb{F}_2^n \mapsto \mathbb{F}_2^m$ is called differentially δ -uniform if, for every nonzero $a \in \mathbb{F}_2^n$ and every $b \in \mathbb{F}_2^m$, the equation F(x) + F(x+a) = b has at most δ solutions. Differentially 2-uniform functions are called APN.

A characterization of differentially δ -uniform functions by the Walsh transform $W_F(u,v) = \sum_{x \in \mathbb{F}_2^n} (-1)^{v \cdot F(x) + u \cdot x}$ is known only for $\delta = 2$:

$$\sum_{u,v\in\mathbb{F}_2^n; v\neq 0} W_F^4(u,v) = 2^{3n+1}(2^n-1).$$

We shall give characterizations for any $\delta \geq 4$ and new ones for $\delta = 2$. In particular:

• Every (n, n)-function F is APN if and only if:

$$\sum_{\substack{u_1, u_2 \in \mathbb{F}_2^n; v_1, v_2 \in \mathbb{F}_2^n \\ v_1 \neq 0, v_2 \neq 0, v_1 \neq v_2}} W_F^2(u_1, v_1) W_F^2(u_2, v_2) W_F^2(u_1 + u_2, v_1 + v_2) = 2^{5n} (2^n - 1)(2^n - 2),$$

• Every (n, n-1)-function F is differentially 4-uniform if and only if:

 $\sum_{\substack{u_1,u_2 \in \mathbb{F}_2^n; v_1, v_2 \in \mathbb{F}_2^m \\ w \neq 0, w \neq 0}} W_F^2(u_1, v_1) W_F^2(u_2, v_2) W_F^2(u_1 + u_2, v_1 + v_2) = 2^{5n} (2^{n-1} - 1)(2^{n-1} - 2).$

We shall introduce two notions on (n, n)-functions:

- componentwise APNness, for which the arithmetic mean of $W_F^4(u, v)$ when $u \in \mathbb{F}_2^n$ and v is fixed nonzero in \mathbb{F}_2^n equals 2^{2n+1} ,
- componentwise Walsh uniformity, for which the arithmetic mean of $W_F^2(u_1, v_1)W_F^2(u_2, v_2)W_F^2(u_1 + u_2, v_1 + v_2)$ when $u_1, u_2 \in \mathbb{F}_2^n$ and v_1, v_2 are fixed nonzero and distinct in \mathbb{F}_2^m , equals 2^{3n} .

We shall study these notions, prove that quadratic and Kasami APN functions are componentwise Walsh uniform, as well as the inverse of one of the Gold functions, and deduce a new property of Kasami functions related to the difference set property proved by Dillon and Dobbertin in [New cyclic difference sets with Singer parameters, FFA 2004].