Constructions of S-boxes with Uniform Sharing

Kerem Varici¹, Svetla Nikova¹, Ventzislav Nikov², and Vincent Rijmen¹

¹ KU Leuven, imec-COSIC, Belgium, ${name.sumame}$)@esat.kuleuven.be ² NXP Semiconductors, Belgium, venci.nikov@gmail.com

Two S-boxes $S_1(x)$ and $S_2(x)$ are *affine equivalent* if there exists a pair of invertible affine permutations $A(x)$ and $B(x)$, such that $S_1 = A \circ S_2 \circ B$. The set of invertible 3×3 S-boxes contains 4 equivalence classes: 3 classes containing quadratic functions, and one class containing the affine functions. There is a transformation [2] which expands the 3-bit classes Q_1^3 , Q_2^3 , and Q_3^3 into 4-bit classes Q_4^4 , Q_{12}^4 and Q_{300}^4 . Recently a classification of all quadratic 5×5 S-boxes was presented [1]. The 5-bit classes $Q_1^5, Q_2^5, Q_4^5, Q_7^5, Q_{13}^5$ and Q_{30}^5 are extensions of the 4-bit quadratic classes $Q_4^4, Q_{294}^4, Q_{12}^4$, Q_{299}^4 , Q_{293}^4 and Q_{300}^4 . Thus the method used in the above publications can be summarized as follows: define $S_1(\bar{x})=(t_1,t_2,\ldots,t_n), S(\bar{x}, x_{n+1})=(y_1,y_2,\ldots,y_{n+1}),$ where $\bar{x}=(x_1,x_2,\ldots,x_n)$ and

$$
y_i(\bar{x}, x_{n+1}) = t_i(\bar{x}), \quad \text{for } i = 1, ..., n
$$

\n
$$
y_{n+1}(\bar{x}, x_{n+1}) = x_{n+1}
$$
 (1)

Another well known construction is the so-called *Shannon expansion*: any function *F* can be presented as follows

$$
F(\bar{x}) = x_i F_{x_i=1}(\bar{x}) + (x_i + 1) F_{x_i=0}(\bar{x})
$$
\n(2)

where $F_{x_i=1}(\bar{x}) = F(x_1, ..., x_i = 1, ..., x_n)$ and $F_{x_i=0}(\bar{x}) = F(x_1, ..., x_i = 0, ..., x_n)$.

Threshold implementation is a method to provide side-channel resistance based on the use of *uniform sharings* [2]. For efficiency reasons, one wants to find uniform sharings with a minimal number of shares. Recall that uniform sharing with 3 shares exists for all 3×3 S-boxes except for class Q_3^3 ; and a uniform sharing with 4,5 and more shares exists for all 3 classes. When $n = 4$ a uniform sharing with 3 shares exists for all 5 quadratic classes except for Q_{300}^4 ; and a uniform sharing with 4, 5 and more shares exists for all 6 of them. When $n = 5$ a 3-share uniform sharing exists for 30 of the quadratic permutation classes. Moreover, all 5-bit quadratic permutation classes have uniform sharing with 4 and more shares.

Given two $n \times n$ bijective S-boxes $S_1(\bar{x}) = (t_1, t_2, \ldots, t_n)$ and $S_2(\bar{x}) = (u_1, u_2, \ldots, u_n)$ then using (2) we get an $(n + 1) \times (n + 1)$ S-box $S(\bar{x}, x_{n+1}) = (y_1, y_2, \ldots, y_{n+1})$:

$$
y_i(\bar{x}, x_{n+1}) = x_{n+1}t_i(\bar{x}) + (1 + x_{n+1})u_i(\bar{x}), \text{ for } i = 1, ..., n
$$

\n
$$
y_{n+1}(\bar{x}, x_{n+1}) = x_{n+1}F(\bar{x}) + (1 + x_{n+1})G(\bar{x})
$$
\n(3)

Theorem 1. *Given* S_1 *and* S_2 *are bijections then* S *is a bijection if and only if*

$$
G(\bar{x}) = F(S_1^{-1}(S_2(\bar{x}))) + 1
$$
 or equivalently $G = S_2 \circ S_1^{-1} \circ F + 1$ holds.

When $S_1 = S_2$ this simplifies to:

$$
y_i(\bar{x}, x_{n+1}) = t_i(\bar{x}), \qquad \text{for } i = 1, ..., n
$$

\n
$$
y_{n+1}(\bar{x}, x_{n+1}) = x_{n+1} + F(\bar{x})
$$
\n(4)

Note that compared to the constructions (1) used in [2] to get from 3×3 an 4×4 S-box and similarly in [1] from 4×4 an 5×5 S-box, the construction (4) extends it to allow *F* to be any Boolean function of *n* variables. We can prove that uniform sharing with *s* shares exist for *S* in (4) if and only if *S*¹ and *F* have uniform sharing with *s* shares.

References

- 1. D. Bozilov, B. Bilgin, H. Sahin. "A Note on 5-bit Quadratic Permutations Classification", FSE 2017.
- 2. B. Bilgin, S. Nikova, V. Rijmen, V. Nikov, G. Stutz. "Threshold Implementations of all 3×3 and 4×4 S-boxes", CHES 2012, LNCS 7428, 76-91.