Separable Statistics in Linear Cryptanalysis

S. Fauskanger and I. Semaev

August 8, 2017

Let \mathbf{x} be a vectorial random variable. In a cryptanalysis based on generalisations of Matsui's Algorithm 2 the variable \mathbf{x} incorporates some bits of the encryption first round output and some bits of the last round input. As \mathbf{x} depends on the cipher key, there is a huge variety of possible distributions to \mathbf{x} . So one can only compute an approximation to the distribution of \mathbf{x} . It may depend on a relatively low number of the key-bits(linear combination of the key-bits) denoted key. On the other hand, the observation on \mathbf{x} depends on the available plain-text/cipher-text blocks and a number of the key-bits from the first and the last round keys. Let's denote those key-bits by Key. In theory, one can apply a multivariate variation of Matsui's linear cryptanalysis developed by Baign et al., Hermelin et al. by using LLR (logarithmic likelihood ratio) statistic, which depends on both a priori distribution and observation, and therefore on $\overline{K} = \mathbf{key}$, Key. That may not be efficient if the size(rank) of \overline{K} is large. The latter always happens due to the diffusion in the first and the last rounds if the size of \mathbf{x} is large enough. One is to run over $2^{rank(\overline{K})}$ values of the statistic to range the values of \overline{K} and to get \overline{K} -candidates to be brute forced.

The distribution of the projections (functions) $h_i(\mathbf{x})$ and observations on them may depend on a much lower number of the key-bits $\bar{K}_i = \mathbf{key}_i$, \mathbf{Key}_i . At least that holds for DES. The sub-keys \bar{K}_i which affect the distributions and the observations for the projections h_i may partly coincide or be linearly dependent. In this talk we first show how to compute an approximate a priori distribution of multivariate random variables \mathbf{x} constructed with internal bits of DES-type encryption. Second, we demonstrate how by observing the values of several projections $h_i(\mathbf{x})$ reconstruct a set of \bar{K} -candidates which contains the correct value with a prescribed success probability. We will answer what the size of that set is. That defines the complexity of the attack.

Let the observation $x = (x_1, \ldots, x_m)$ on m projections $h_i(\mathbf{x})$ be available, where x_i is a vector of realisations of $h_i(\mathbf{x})$, So that x_i is a function in available plain-text/cipher-text and \bar{K}_i . A statistic S(x) is called separable if $S(x) = \sum_{i=1}^m S_i(x_i)$. One decides the value of \bar{K} is correct if S(x) > z for some z. If a priori distribution of \mathbf{x} is close to be uniform, it looks that the best possible statistic to distinguish it from the uniform distribution by observing $h_i(\mathbf{x})$ is approximately separable. In that case $S_i(x_i)$ are weighted LLR statistics for separate $h_i(\mathbf{x})$. That allows an efficient algorithm to construct \bar{K} -values from \bar{K}_i -values. We apply this new technique to 16-round DES with success.